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ABSTRACT 

Iron is a redox-active protein cofactor required for essential cellular functions such 

as respiration, however excess intracellular iron can generate damaging reactive oxygen 

species. Understanding how cells regulate iron levels is critical for treatment of human 

diseases that span from anemia to iron overload disorders. Glutaredoxins (Grxs) with a 

CGFS active site are highly conserved proteins shown to have roles in iron homeostasis 

and iron-sulfur cluster assembly, thus earning them the title “the Iron Whores”. They can 

exist either as a [2Fe-2S] cluster-bound dimer or an apo monomer, suggesting conservation 

of structure and function. In addition, Grxs interact with the BolA family of proteins, which 

also have genetic connections to metal and sulfur metabolism. In the model eukaryote 

Saccharomyces cerevisiae, CGFS-type Grxs and the BolA-like protein Fra2 were shown 

to transfer an Fe-S cluster to the transcriptional activators Aft1 and Aft2, inhibiting their 

DNA binding activity. 

E. coli express one CGFS glutaredoxin, Grx4, and two BolA-like proteins, BolA 

and YrbA. Grx4 forms [2Fe-2S]-bridged homodimers alone, while co-expression of Grx4 

with BolA or YrbA yields [2Fe-2S]-bridged heterodimers. In vitro studies indicate 

differences in Fe-S cluster binding between these two heterodimers. These results reinforce 

the idea that Grx4 acts as Fe-S transport and delivery proteins, while interaction with 

BolA/YrbA may alter the function or specificity.
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In the fission yeast Schizosaccharomyces pombe, the CGFS glutaredoxin Grx4 

interacts with and regulates the iron-dependent transcriptional repressor Php4. Similar to 

its homologues, Grx4 forms a [2Fe-2S]-bridged homodimer alone, and a [2Fe-2S]-bridged 

heterocomplex when co-expressed with Php4. Comparison of these complexes indicates 

differing cluster coordination environments. These results suggest that when iron is 

sufficient, Grx4 interacts with Php4 to form a [2Fe-2S] cluster-bound complex, 

communicating cellular iron status and inhibiting Php4 activity.  

Erv1 is a sulfhydryl oxidase involved in importing proteins into the mitochondria. 

In S. cerevisiae, Erv1 was implicated in cytosolic Fe-S cluster proteins maturation and iron 

regulation. However, these studies were performed on a single erv1 mutant strain, erv1-1, 

that we discovered has additional defects in glutathione metabolism. To investigate the 

Erv1-dependent connection between GSH metabolism and iron homeostasis, we measured 

GSH levels and Fe-S protein activity in a variety of erv1 mutants. Only the erv1-1 strain 

has significantly reduced GSH levels, due to a mutation in a glutathione biosynthesis gene. 

This mutation causes dysfunctional iron regulation and iron accumulation. Together, these 

results suggest that the Fe-S cluster maturation and iron regulation defects reported in the 

erv1-1 strain are due to a mutation in GSH metabolism, rather than indicating a direct role 

for Erv1 in iron metabolism. 
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CHAPTER 1 

INTRODUCTION AND SCOPE OF THESIS
1 

 

INTRODUCTION AND SIGNIFICANCE 

Organisms use a variety of transition metals as catalytic centers in proteins, 

including iron, copper, manganese, and zinc. Iron is well suited to redox reactions due to 

its capability to act as both an electron donor and acceptor. In cells, iron is a cofactor for a 

wide variety of metalloproteins involved in energy metabolism, oxygen binding, DNA 

biosynthesis and repair, synthesis of biopolymers, cofactors, and vitamins, drug 

metabolism, antioxidant function, and many others. Because iron is so important for 

survival, organisms utilize several techniques to optimize uptake and storage to ensure 

maintenance of sufficient levels for cellular requirements. However, the redox properties 

of iron also make it extremely toxic if cells have excessive amounts. Free iron can catalyze 

the formation of reactive oxygen species such as the hydroxyl radical, which in turn can 

damage proteins, lipids, membranes, and DNA. Cells must maintain a delicate balance 

between iron deficiency and iron overload that involves coordinated control at the 

transcriptional, post-transcriptional, and post-translational levels to help fine tune iron 

utilization and iron trafficking. 

 

1Dlouhy, A. C.; Outten, C. E., The iron metallome in eukaryotic organisms. Met Ions Life 

Sci 2013, 12, 241-78. Reprinted here with permission of publisher.
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PROPERTIES OF THE IRON METALLOME 

Intracellular Concentration, Oxidation State, and Speciation. Iron is the 

most abundant metal on Earth, thus it is not surprising that almost all organisms have 

evolved to exploit the unique chemical properties of this ubiquitous transition metal. Iron 

primarily exists in either the ferrous (Fe2+) or ferric (Fe3+) oxidation state in biological 

systems. Due to its critical role in cell metabolism, iron constitutes a significant portion of 

the cellular metallome (Eide et al, 2005). Intracellular iron concentrations vary with cell 

type, environmental conditions, and disease state. The iron concentration of human 

erythroid cells was measured at 300-400 µM (Epsztejn et al, 1999), while isolated rat 

hepatocytes maintain iron concentrations close to 1 mM (Petrat et al, 1999). Iron overload 

diseases caused by mutations in iron handling proteins can lead to 10- to 20-fold increases 

in these intracellular iron levels in specific tissues (Ceccarelli et al, 1995; Gao et al, 2010; 

Petrak et al, 2006). The local bioavailability of iron also strongly influences intracellular 

concentrations. For example, analysis of the single-celled model eukaryote S. cerevisiae 

demonstrated intracellular iron concentrations ranging from 250 µM to 600 µM depending 

on the iron content of the growth medium (Eide et al, 2005; Miao et al, 2011). 

E. coli grown in rich media are 0.014% iron by weight in exponential phase, where 

0.02% is approximately 106 atoms of iron per cell (Abdul-Tehrani et al, 1999). Iron content 

almost doubles to 0.026% in stationary phase, when cells begin iron storage. Cells grown 

under iron starvation conditions can be as low as 0.002% iron by weight. In stationary 

phase, almost 75% of cellular iron is in the ferric state. While the distribution of this iron 

is unclear, it is thought that the majority is bound to proteins as heme, Fe-S clusters, and 

mono- or -divalent iron centers. Another recent study showed that about 4% of cellular 
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metalloproteins are non-heme iron, with 40% of those containing an Fe-S cluster (Andreini 

et al, 2009). Up to half of the cellular iron can be contained within iron storage proteins 

under iron-replete growth conditions (Abdul-Tehrani et al, 1999). 

To better study the iron metallome in eukaryotes, biophysical probes such as 

Mössbauer and electron paramagnetic resonance (EPR) have been recently employed to 

measure not only the absolute iron concentration, but also the types of iron and how this 

varies within specific organelles (Lindahl and Holmes-Hampton, 2011). Lindahl and 

colleagues have used an integrated biophysical approach to characterize the iron speciation 

in S. cerevisiae whole cells and organelles under several growth conditions (Miao et al, 

2011; Cockrell et al, 2011; Holmes-Hampton et al, 2010; Miao et al, 2009). These studies 

clearly demonstrate that the mitochondria and vacuole are the two central hubs of iron 

metabolism in this organism. In general, yeast mitochondria contain 700-800 µM Fe. In 

respiring cells, most of this mitochondrial iron is present as the prosthetic groups of the 

respiratory complexes (~70% [4Fe-4S]2+ clusters and heme centers), with the remaining 

iron present as [2Fe-2S]1+ clusters in enzymes and as non-heme, high spin Fe2+ ions. 

Conversely, in fermenting cells the iron from respiratory complexes is reduced to ~30% of 

the total iron, there is an increase in non-heme iron, and the appearance of ferric phosphate 

nanoparticles. Mutations in Fe-S cluster assembly and trafficking proteins leads to 

increased concentration of these nanoparticles with a concomitant rise in reactive oxygen 

species (Miao et al, 2011; Miao et al, 2009). The other major iron repository in yeast is the 

vacuole. Vacuoles isolated from fermenting yeast contain an average of 220 µM Fe in the 

ferric state, which is expected given the acidic environment of this organelle (pH ~ 5). 

Vacuolar iron is present in both a soluble Fe(III) complex and insoluble, magnetically-
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interacting Fe(III) nanoparticles, which interconvert based on changes in pH (Cockrell et 

al, 2011).  

Characterization of iron speciation in other organelles and organisms is still in the 

initial stages as most published studies are based on a single technique, instead of 

verification by several methods. In addition, various techniques have been used to study 

different organisms, making comparison of results challenging. Iron can be found in a 

variety of different forms based on location (and thus pH and redox potential), available 

ligands, and cellular need. The integrated approach described above is one of the most 

promising for studying the iron metallome: by combining Mössbauer, EPR, X-ray 

absorption spectroscopy (XAS), electronic absorption spectroscopy, and electron 

microscopy, one can resolve different groups of iron species (such as Fe-S clusters, hemes, 

and nanoparticles) at a relatively low concentration. In particular, XAS techniques such as 

X-ray absorption near edge structure (XANES) and extended X-ray absorption fine 

structure (EXAFS) give information about oxidation state, geometry, and ligation. All 

forms of iron can be detected and quantified, so changing levels of species can also be 

monitored (Ortega et al, 2009). 

Another promising method for future studies is X-ray fluorescence microscopy 

(XRFM), which provides information about metal distribution, oxidation state, and 

coordination. XRFM offers high spatial resolution of biological samples by detection of 

emitted X-rays from the sample after irradiation. Pairing this with XANES can provide 

more information about iron speciation and subcellular distribution. A combination of 

XRFM and XAS studies on brain tissue from Alzheimer’s disease patients showed an 

increased concentration of iron found mainly in the oxidized form (Fahrni, 2007). 
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Fluorescence intensity from XRFM studies is directly proportional to the element 

concentration, providing some quantitative analysis of samples. Quantification of 

transition metals in cells and organelles can also be accomplished using particle-induced 

X-ray emission (PIXE). Like XRFM, PIXE analysis detects X-rays that are emitted which 

are characteristic of elements in the sample. This technique is capable of detecting and 

quantifying trace elements (including Fe, Mn, Zn, and Cu) in the µg/g range (Ortega et al, 

2009). 

Subcellular Distribution. As mentioned above, the majority of cellular iron in 

eukaryotes is found in the mitochondria and the cytosol for utilization in iron-dependent 

proteins. While yeast store excess iron in the vacuole, mammals express iron storage 

proteins such as ferritin and mitochondrial ferritin for this purpose. In addition, iron is 

recycled in lysosomes after iron-containing proteins are degraded. For example, human 

liver and spleen cells from patients with hemochromatosis (an iron overload disease) were 

found to contain iron-loaded lysosomes (siderosomes), hemosiderin (a degradation product 

of ferritin), and ferritin (Iancu et al, 1997). There has not been a significant amount of 

research focused on the concentration and chemical nature of iron in the endoplasmic 

reticulum (ER). However, the existence of iron pools in this organelle is likely since a 

number of heme and non-heme iron proteins are located in the ER. More information on 

iron-containing organelles and iron storage proteins is covered in more detail in a later 

section.  

Iron Bioavailability. Although iron is one of the most abundant elements on 

Earth, the environment is usually oxygenated, non-acidic, and aqueous. Under these 

conditions, extracellular iron is predominantly found in the poorly soluble ferric (Fe3+) 
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state. One way that organisms improve iron bioavailability is by acidifying the local 

environment. The solubility of ferric iron is pH-dependent, changing from 10-18 M at pH 7 

to 10-3 M at pH 2. By lowering the pH of the surrounding environment, organisms facilitate 

solubilization and uptake of iron. ATP-driven proton transporters move H+ ions from the 

cytosol across the plasma membrane to control the pH at the cell surface (Kaplan and 

Kaplan, 2009). Humans also use an acidic environment to facilitate uptake of dietary iron. 

Uptake mainly occurs though enterocytes in the duodenum, which receives the acidic 

contents of the stomach. Iron can then be absorbed for storage in intestinal cells or delivery 

to other cells (Kaplan and Kaplan, 2009; Hentze et al, 2004).  

Many microorganisms, including E. coli and some fungi, also secrete low 

molecular weight compounds known as siderophores into their surroundings, which form 

high-affinity (~10-33 M) complexes with ferric iron to make it bioavailable for uptake. 

Transporters on the cell surface then recapture the Fe3+-siderophores complexes. For 

infectious microorganisms, these molecules help the invading pathogen acquire iron from 

the host for survival. Interestingly, two reports suggest that mammalian cells may also 

synthesize their own siderophores (Bao et al, 2010; Petrat et al, 2002; Devireddy et al, 

2010). In both cases, the siderophore-like compound was isolated by screening for 

molecules that bound to siderocalins, a class of lipocalins that specifically bind exogenous 

siderophores. Siderocalins are weapons in the immune system arsenal, designed to prevent 

the invading organisms from acquiring iron by sequestering Fe3+-bound siderophores 

(Correnti and Strong, 2012). However, these new studies suggest that siderocalins may also 

bind Fe3+ complexed with endogenous siderophores to facilitate iron trafficking. The 

candidate endogenous siderophore-like compounds isolated include catechol and catechol-
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like compounds (Bao et al, 2010), as well as a molecule with a 2,5-dihydroxybenzoic acid 

(2,5-DHBA) iron-binding moiety, which is isomeric to 2,3-DHBA found in the bacterial 

siderophore enterobactin (Figure 1.1) (Devireddy et al, 2010). BDH2, a homologue of 

bacterial EntA (which catalyzes 2,3-DHBA production), was found to be responsible for 

2,5-DHBA production. Knockdowns of BDH2 suggested that the 2,5-DHBA-containing 

mammalian siderophore is involved in regulating both cytosolic and mitochondrial iron 

levels (Devireddy et al, 2010). 

Intracellular Labile Iron Pools. The vast majority of iron is bound to proteins 

and enzymes for use as a cofactor or stored in ferritin, vacuoles, and lysosomes. The 

remaining iron in the cell is proposed to be part of a labile iron pool (LIP), also known as 

chelatable or free iron, which is most likely present as ferrous complexes given the neutral 

pH and reducing conditions inside the cell. The LIP is thought to constitute only 0.1-3% of 

total cellular iron (Petrat et al, 2001). EPR studies on E. coli cells suggest this to be around 

10 μM (Keyer and Imlay, 1996). The LIP is thought to act as a crossroads in iron 

trafficking, providing iron for incorporation into metalloenzymes, feeding pathways for 

heme and Fe-S biosynthesis, and directing excess iron towards storage or export proteins 

(Hentze et al, 2010). The LIP is also assumed to be dynamic in nature, shrinking and 

growing in response to the needs of the cell. Only recently has research focused on 

uncovering the chemical nature of iron in the cytosolic LIP (Hider and Kong, 2011). At 

physiological conditions, small molecular weight ligands such as phosphates, citrate, 

cysteine, and glutathione (GSH) are available to bind Fe(II) (Petrat et al, 2011). While the 

predominant ligand for the LIP remains an open question, potentiometric and binding 

affinity studies suggest that only GSH is present at high enough concentrations with 
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Figure 1.1. Structural comparison of Fe3+-binding siderophore moieties: (a) catechol and 

(b) 2,5-DHBA found in mammalian cells, and (c) 2,3-DHBA found in bacterial 

enterobactin. 
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sufficient binding affinity to buffer the labile Fe(II) pool, forming the proposed pentaaquo-

Fe(II)-GSH complex shown in Figure 1.2. This iron-GSH complex is suggested to be a 

way for cells to distinguish between Fe(II) and Mn(II), which have similar intracellular 

concentrations. In addition, the Fe(II)-GSH complex may play a role in iron trafficking 

based on the interaction of GSH with monothiol glutaredoxins, which are essential for iron 

regulation and trafficking (Muhlenhoff et al, 2010). 

There is some evidence that a labile iron pool exists in individual organelles as well 

as the cytosol. Using fluorescent indicators, the LIP in mammalian mitochondria was 

measured between 1 and 16 µM depending on the cell type, which constitutes <0.4% of 

total mitochondrial iron (Petrat et al, 2002; Rauen et al, 2007; Sturm et al, 2005). Studies 

on mitochondrial iron speciation in yeast suggest that a somewhat larger pool of non-heme, 

high spin Fe2+ is used in assembly of hemes and Fe-S clusters. The exact nature of this iron 

is still unknown, although it is presumably loosely bound by low molecular weight ligands 

similar to the cytosol. In actively respiring mitochondria, this pool constitutes ~2% of total 

mitochondrial iron, but grows to 20% during fermentation when the rate of Fe-S cluster 

and heme biosynthesis decreases. Since the total mitochondrial iron in yeast is nearly 

identical in respiring vs. fermenting cells, these results demonstrate dynamic shifts in 

subcellular iron speciation rather than mitochondrial iron import in response to changes in 

energy metabolism (Holmes-Hampton et al, 2010).  

Iron Toxicity: Oxidative Stress and Formation of ROS. Although iron is required 

for many cellular processes, excess iron levels can be toxic to cells. Iron has a central role 

in the production of one of the most reactive oxygen species (ROS) found in the cell, the 

hydroxyl radical (HO•). Intracellular iron catalyzes formation of HO• non-
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Figure 1.2. Proposed structure of the glutathione-coordinating complex with 

Fe(II) found in the labile iron pool. 

  



www.manaraa.com

 

11 
 

enzymatically by reacting with the superoxide anion (O2
•−) (Eq. 1.1) and hydrogen 

peroxide (H2O2) (Eq. 1.2) (Kehrer, 2000).  

Fe3+ + O2
•− → Fe2+ + O2       (1.1) 

Fe2+ + H2O2 → Fe3+ + HO− + HO•  (Fenton reaction)  (1.2) 

Net reaction (1) + (2): 

O2
•− + H2O2 → O2 + HO− + HO•  (Haber-Weiss reaction) (1.3) 

ROS such as H2O2 and O2
•− are produced naturally in vivo through enzymatic 

reactions and auto-oxidation from endogenous compounds and have well-documented 

roles in signal transduction pathways and immune cell response (Rovira et al, 2007). 

However, when left unchecked, these molecules together with HO• have the ability to 

initiate oxidative damage to DNA, lipids, and proteins, all of which contribute to cell death, 

aging, and various diseases. Thus iron overload diseases are often characterized by elevated 

levels of biomarkers for oxidative stress, including protein carbonyls, DNA oxidation 

products, lipid peroxidation, advanced glycation end products, and malondialdehyde 

formation. Accumulation of iron in the brain coupled with oxidative stress is also a 

common feature of neurodegenerative diseases such as Alzheimer’s and Parkinson’s 

disease (Jomova and Valko, 2011).   

Iron Toxicity: Iron Interference in Other Metal Trafficking Pathways. Recent 

studies also suggest that iron toxicity may not be solely due to iron-catalyzed ROS 

formation. Kaplan and coworkers demonstrated that toxicity is not dependent on the 

presence of oxygen, since iron is toxic to yeast even under anaerobic growth conditions 

(Lin et al, 2011). Alternatively, iron toxicity may stem from the interference of excess iron 

in other metal trafficking pathways. Strong evidence for this hypothesis is the effect of 
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excess iron on manganese trafficking to the antioxidant enzyme superoxide dismutase 

(SOD). Eukaryotic cells express an SOD in the mitochondria, SOD2, which preferentially 

binds manganese over iron under normal conditions. SOD2 is an essential antioxidant 

enzyme since deletion of the SOD2 gene leads to neonatal lethality in mouse models 

(Lebovitz et al, 1996; Y. Li et al, 1995). SOD2 activity requires the correct insertion of 

manganese into the enzyme, while misincorporation of iron renders it inactive 

(Naranuntarat et al, 2009; Yang et al, 2006). Studies of SOD2 mismetallation in yeast 

revealed the presence of two distinct iron pools in the mitochondria, one being “SOD2-

inert” and the other “SOD2-reactive”. Disruption of iron homeostasis increases the reactive 

pool (without significantly affecting total mitochondrial iron), allowing for iron 

incorporation into SOD2. In particular, disruptions in the late stages of mitochondrial Fe-

S cluster biogenesis led to diversion of iron to SOD2. A somewhat similar situation was 

observed in a mouse model of the iron overload disease hereditary hemochromatosis, albeit 

via a different mechanism. In this case, cytosolic iron overaccumulation was found to 

disrupt trafficking of copper, zinc, and manganese to mitochondria, leading to deficiencies 

of these essential metals in this organelle. Consequently, Mn-SOD2 activity was 

significantly reduced leading to lower respiratory activity and increased lipid peroxidation 

(Jouihan et al, 2008).  

IRON METALLOPROTEINS 

Mono- and Dinuclear Non-Heme Iron Proteins. While heme iron and Fe-S 

clusters are two of the most common ways that proteins use iron as a cofactor, it is found 

in other forms. Non-heme iron cofactors can be bound directly to proteins as mononuclear 

and dinuclear iron centers with a variety of amino acid ligands and bridging atoms adapted 
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for specific roles. Many non-heme iron centers catalyze similar reactions to heme enzymes. 

For example, both heme and non-heme diiron enzymes can act as monoxygenases that 

insert oxygen atoms into substrate molecules. Non-heme iron proteins catalyze a wide array 

of reactions, such as converting nucleoside diphosphates (NDP) to deoxyNDPs 

(ribonucleotide reductase), catalyzing biomineralization of iron for intracellular storage 

(ferritin), sensing oxygen (prolyl hydroxylases), synthesizing eicosanoids (lipoxygenases), 

and modifying histones (lysine demethylases). 

Due to the multitude of different non-heme iron centers, there is not a singular 

system for assembly and insertion of these cofactors. In most cases, a specific set of 

proteins are required: a chaperone for iron delivery, redox proteins to maintain the 

oxidation state of iron, and enzymes involved in protein folding that allow for proper 

insertion of the metal. For metalloproteins that merely need their cofactor inserted (such as 

mononuclear iron), cells can minimize metal misincorporation by compartmentalizing 

proteins and using metal chaperones. The metal concentrations in different subcellular 

compartments can vary, and a metalloprotein’s metal affinity is usually tailored to these 

specific ranges.  

Heme-Containing Proteins. Organisms utilize heme-containing proteins for a 

variety of processes, including sensing and transport of oxygen, energy metabolism, 

transcriptional regulation, and protein stability. Heme consists of iron bound to a porphyrin 

ring (shown in Figure 1.3), where the iron can act as an electron source or sink for redox 

and electron transfer processes. In mammals, heme is one of the most important iron 

cofactors. It is best known as an oxygen carrier when bound to hemoglobin in red blood 

cells. Cytochromes are hemoproteins involved in electron transfer reactions. For example,  
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Figure 1.3. Heme cofactor. Structure of protoporhyrin IX with ferrous iron inserted.  
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cytochrome c transfers electrons between Complexes III and IV in the electron transport 

chain of the mitochondria. The cytochrome P450 enzyme family catalyzes the oxidation of 

many organic compounds, including lipids, hormones, and xenobiotics. Catalases and 

peroxidases are both hemoprotein families that protect against peroxide damage. Catalase 

prevents H2O2 damage by catalyzing its decomposition to H2O and O2. Peroxidases use 

heme to convert peroxides into alcohols using electron donors and protons, again to prevent 

damage caused by reactive peroxides. Recently, it was shown that the nuclear receptor 

Rev-erbα binds heme and regulates circadian rhythmicity as well as other metabolic 

pathways (Yin et al, 2007). 

The steps involved in the synthesis of heme are well conserved from prokaryotes 

to eukaryotes (Figure 1.4). As mentioned previously, free iron is toxic to cells due to 

generation of ROS. Both porphyrin and heme are also toxic, generating oxygen radicals 

and peroxidase activity, respectively. To reduce the risk of these potentially toxic 

molecules, heme biogenesis is linked to intracellular iron concentrations and synthesis of 

hemoprotein precursors. The heme synthesis machinery is distributed in both the cytosol 

and the mitochondria in eukaryotes, requiring intermediates in this pathway to be shuttled 

across membranes. Transport of these porphyrin intermediates must be tightly regulated, 

again to reduce the risk of toxic components accumulating in the cell (Hamza, 2006). 

The first phase in heme biosynthesis is formation of the pyrrole. Initially, ALA 

synthase (ALAS) catalyzes this condensation reaction between succinyl-CoA and glycine 

to form 5-aminolevulinic acid (ALA) in the mitochondrial matrix. ALA is then transported 

to the cytosol, possibly via exchange for glycine by the mitochondrial carrier protein 

SLC25A38, where aminolevulinate dehydratase (ALAD) catalyzes the condensation of 
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Figure 1.4. Heme biosynthesis pathway in eukaryotes. (a) Glycine is transported into the 

mitochondrial matrix via an unknown mechanism where it is combined with succinyl-CoA 

by ALA synthase (ALAS) to form ALA. (b) ALA is transported out to the cytosol where 

it is converted to CPgenIII through four conserved steps. (c) ABCB6 is the transporter 

proposed to import CPgenIII to the IMS where it is converted first to PPgenIX by CPOX, 

then to protoporphyrin IX (PPIX) by PPOX. (d) PPIX is transported to the matrix where 

iron is inserted by ferrochelatase (FECH). The proposed Fe(II) importers are Mrs3/4 

(MFRN1/2 in mammalian cells). (e) Assembled heme is inserted into target apo proteins 

to form hemoproteins in the mitochondria, possibly aided by FECH. (f) Heme is inserted 

into target apo proteins in the cytosol, possibly aided by GSTs. 
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two ALA molecules to form monopyrrole porphobilinogen. After formation of the 

monopyrrole is complete, porphobilinogen deaminase (PBGD) catalyzes assembly of the 

unstable tetrapyrrole hydroxymethylbilane (HMB) from four molecules of 

porphobilinogen. Formation of the tetrapyrrole macrocycle is completed by 

uroporphyrinogen III synthase (URO3S), which catalyzes the ring inversion and closure of 

HMB to make uroporphyrinogen III (UPgenIII) (Ajioka et al, 2006; Shoolingin-Jordan et 

al, 2003). Once the tetrapyrrole is formed, the side chains need to be modified to form the 

correct porphyrin before insertion of iron. Uroporphyrinogen decarboxylase (UROD) 

catalyzes the removal of carboxyl groups from the acetic acid side chains of UPgenIII to 

form coproporphyrinogen III (CPgenIII). Coproporphyrinogen oxidase (CPOX) catalyzes 

the conversion of CPgenIII to protoporphyrinogen IX (PPgenIX) via oxidative 

decarboxylation of the pyrrole ring propionate groups to vinyl groups. CPOX is cytosolic 

in yeast, and located in the mitochondrial intermembrane space (IMS) in higher eukaryotes. 

Several studies suggest that the ATP-binding cassette transporter protein ABCB6 is either 

the CPgenIII transporter, or is somehow involved in the transport of CPgenIII to the IMS 

in mammals (Krishnamurthy et al, 2006). Protoporphyrinogen oxidase (PPOX) located on 

the outer surface of the mitochondrial inner membrane catalyzes oxidation of PPgenIX to 

protoporphyrin IX (PPIX) in the IMS (Ajioka et al, 2006).  

The final step in forming heme is the insertion of ferrous iron into PPIX by 

ferrochelatase (FECH) in the mitochondrial matrix. There is some evidence that FECH 

physically interacts with PPOX across the mitochondrial inner membrane to allow 

substrate channeling of PPIX between these two enzymes (Schultz et al, 2010). Human 

and S. pombe forms of FECH contain a structural [2Fe-2S] cluster that is sensitive to nitric 
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oxide, while S. cerevisiae and bacterial ferrochelatases lack the Fe-S cluster (Dailey, 2002). 

Studies indicate that ferrous iron may be imported into the matrix by Mrs3/4 importers 

(Mfrn1/2 or mitoferrin in mammalian cells). The yeast homologue of human frataxin, 

Yfh1, is proposed to act as an iron chaperone and donate Fe(II) to ferrochelatase for heme 

biosynthesis (Park et al, 2003). However, human frataxin does not seem to be involved in 

heme biosynthesis, although it may have a role in Fe-S protein assembly (Sheftel et al, 

2010; Rouault, 2012). 

Once heme is fully assembled, it must be transported from FECH in the matrix 

across one or more membranes to target hemoproteins found in various organelles, such as 

the IMS, cytosol, nucleus, ER, and lysosomes (Severance and Hamza, 2009). FECH may 

act as a heme shuttle for proteins in the matrix that are in the same vicinity, such as 

cytochrome P450. For proteins outside the matrix, there is no known heme chaperone in 

mammals, although heme chaperones for cytochrome c have been identified in plants and 

bacteria (Spielewoy et al, 2001). Some cytosolic heme-binding proteins have also been 

suggested to have a role in heme transport, including glutathione S-transferases (GSTs) 

from liver and red blood cells (Harvey and Beutler, 1982). Hemoproteins found in the 

secretory pathway may obtain heme in the ER, indicating a role for the ER in heme 

delivery. The ER and mitochondria have been shown to physically interact via a tethering 

complex that may provide a path for heme transport from the mitochondria (Schultz et al, 

2010). 

Iron-Sulfur Cluster-Containing Proteins. Similar to the heme cofactor, 

organisms employ iron in the iron-sulfur cluster cofactor for its versatility in electron 

transfer reactions, with redox potentials ranging from -500 to +300 mV. Iron sulfur clusters 
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form as complexes of iron (Fe2+ or Fe3+) and inorganic sulfide (S2-) in various 

arrangements, with two of the most common being [2Fe-2S] and [4Fe-4S] clusters (Figure 

1.5). Certain prokaryotes and cyanobacteria also utilize larger, more complex clusters that 

incorporate additional metals such as molybdenum, nickel, and vanadium. For example, 

the nitrogenase enzyme contains a FeMoco cofactor cluster (MoFe7S9) and a P cluster 

(Fe8S7) in addition to a [4Fe-4S] cluster in the heterodimer form (Johnson, 1998). Evidence 

for these types of complex clusters in higher eukaryotes is lacking. Fe- S proteins can also 

interconvert between cluster forms. The enzyme aconitase is active in the [4Fe-4S] cluster 

form, while partial disassembly to a [3Fe-4S] cluster renders it reversibly inactive. Fe-S 

clusters are usually bound to proteins via coordination of the iron to sulfur from cysteine 

and nitrogen from histidine, although serine and arginine have also been shown to ligate 

Fe-S clusters. In addition to binding to protein residues, the iron can bind other small 

molecules such as glutathione (GSH), homocitrate, CO, and CN−. Recent studies also 

demonstrate that a carbon atom coordinates all 6 Fe at the core of the FeMoco cluster in 

nitrogenase from nitrogen-fixing bacteria (Lancaster et al, 2011). In addition to their well-

known redox function in electron transfer reactions, Fe-S clusters are also involved in heme 

biosynthesis, DNA synthesis and repair, ribosome assembly, tRNA modification, 

nucleotide and amino acid metabolism, and biogenesis of Fe-S proteins (Sheftel et al, 

2010). 

Assembly and Insertion of Iron-Sulfur Clusters in E. coli. E. coli utilize two 

pathways for iron-sulfur cluster biogenesis, depending on growth conditions (Figure 1.6). 

The primary machinery is the ISC (iron-sulfur cluster) system, while the SUF (sulfur 

mobilization) system is induced under iron starvation and oxidative stress conditions. 
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Figure 1.5. Common forms of iron-sulfur cluster cofactors: (a) [2Fe-2S] and (b) [4Fe-4S]. 
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Figure 1.6. Iron-sulfur cluster biosynthesis pathways in E. coli. (a) The ISC pathway uses 

the cysteine desulfurase IscS to obtain sulfur from cysteine. Ferrous iron enters the 

pathway, and the Fe-S cluster is built in the scaffold protein IscU. Ferredoxin and the ATP-

dependent chaperones HscA and HscB aid in transfer of the assembled cluster to target apo 

proteins. The A-type carrier protein IscA may also be involved in cluster transfer. (b) The 

SUF pathway uses a complex of SufS and SufE as the cysteine desulfurase. The cluster is 

assembled on a complex of SufB, SufC, and SufD, which may use the FADH2 cofactor and 

SufC ATPase activity to aid in the assembly. The cluster is then transferred to target apo 

proteins, possibly aided by the A-type carrier SufA. 
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Homologues of the ISC system are found in the mitochondria of eukaryotes, while 

homologues of the SUF system are found in chloroplasts (Lill et al, 2006; Balk and Pilon, 

2011; Lill et al, 2012). All Fe-S cluster assembly systems follow the same basic strategy: 

a cysteine desulfurase produces sulfur, a scaffold protein accommodates cluster building, 

and a carrier delivers the cluster to the target proteins (Py and Barras, 2010; Saini et al, 

2012). While iron donation certainly needs to occur as well, this step is not well-

characterized and sources of iron remain unclear. 

The ISC system is composed of five proteins that are expressed from the isc operon 

(Figure 1.6a). IscS is a pyridoxal-5’-phosphate-dependent enzyme that acts as the 

desulfurase, obtaining sulfur from L-cysteine (Schwartz et al, 2000). This sulfur is bound 

to the enzyme as a persulfide before being transferred to the scaffold, IscU (Smith et al, 

2001; Urbina et al, 2001). As the scaffold protein, IscU accepts the Fe and S, promotes 

cluster assembly, and transfer to targets (Agar et al, 2000; Smith et al, 2001; Urbina et al, 

2001; Chandramouli et al, 2007). IscS forms a dimer and each subunit interacts with one 

IscU, forming a 2:2 stoichiometric complex. NMR studies suggest that IscU can exist in 

either a disordered or structured conformational state (Kim et al, 2009). IscS binding causes 

IscU to convert to the structured form, which also stabilizes the cluster-bound form (Kim 

et al, 2012). Ferredoxin may also function in the ISC system, assisting in coupling two 

[2Fe-2S] clusters to form one [4Fe-4S] on IscU (Chandramouli et al, 2007). In order to 

transfer the Fe-S cluster to target proteins, IscU interacts with the chaperones HscA and 

HscB (Hoff et al, 2000). These chaperones enhance the rate of cluster transfer in an ATP-

dependent fashion (Chandramouli and Johnson, 2006; Bonomi et al, 2008). The 
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chaperones may bind to IscU and stabilize a conformer with low affinity for the [2Fe-2S] 

cluster, thus facilitating cluster release (Bonomi et al, 2011). 

The SUF system functions with two protein complexes: SufBCD and SufSE 

(Figure 1.6b). SufSE is a heterodimer and acts as the sulfur donor for cluster assembly. 

SufS is a homologue of IscS whose activity is improved by interaction with SufE (Mihara 

et al, 2000; Outten et al, 2003). Sulfur is bound as a persulfide on SufS before being 

transferred to SufE for donation (Loiseau et al, 2003). The structure of SufE is similar to 

that of IscU, although it does not have the elements needed for cluster binding or interaction 

with HscA/B (Goldsmith-Fischman et al, 2004). SufBCD is the scaffold complex, and can 

bind and transfer a [4Fe-4S] cluster (Chahal et al, 2009; Wollers et al, 2010). SufB binds 

the cluster and acts as the actual scaffold while interacting with SufC and SufD. SufC has 

ATPase activity that is essential for cluster assembly, although its function remains unclear 

(Saini et al, 2010). SufD is a SufB paralog and seems to be involved in the entry of iron to 

the complex (Nachin et al, 2003; Outten et al, 2003). SufBCD stimulates the desulfurase 

activity of SufSE, with SufC being necessary for the interaction between SufB and SufSE 

(Outten et al, 2003; Layer et al, 2007). While SufBCD is mainly found in the BC2D form, 

it can also exist with other ratios of B:C:D (Wollers et al, 2010). ATPase activity is 

facilitated by the C2D2 complex (Petrovic et al, 2008). The B2C2 complex may be involved 

in Fe-S cluster assembly for [2Fe-2S] ferredoxin, and it may act as the last scaffold in 

assembly (Chahal and Outten, 2012). It has been shown that one BC2D complex binds one 

FADH2 molecule, which may act as an electron donor or mobilization of Fe3+ from 

ferritins, ferric citrate, or the frataxin homologue CyaY-Fe3+ (Pandolfo and Pastore, 2009; 

Wollers et al, 2010). 
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The ISC and SUF systems also contain homologous A-type proteins (IscA and 

SufA, respectively) that were originally thought to be alternative scaffolds since clusters 

can be reconstituted and transferred from them (Ollagnier-de Choudens et al, 2001, 2003, 

2004). It was then shown that clusters can be transferred from IscU to IscA or SufBCD to 

SufA, but not in the reverse direction (Chahal et al, 2009; Ollagnier-de Choudens et al, 

2004). These results and further experiments indicate that IscA and SufA are involved in 

transfer of clusters from the scaffold to target proteins, consequently they were designated 

A-type carriers (Loiseau et al, 2007; Gupta et al, 2009; Vinella et al, 2009). E. coli also 

contain another A-type carrier, ErpA, which seems to be involved in specialized cluster 

delivery. In addition, the monothiol glutaredoxin family has been shown to bind and 

transfer a [2Fe-2S] cluster, thus they may also act as carriers of this type of cluster (Iwema 

et al, 2009; Yeung et al, 2011). 

Assembly and Insertion of Iron-Sulfur Clusters in Eukaryotes. There are two 

identified systems in eukaryotes for assembly of iron-sulfur clusters: the mitochondrial 

iron-sulfur cluster (ISC) assembly machinery and the cytosolic Fe-S protein assembly 

(CIA) machinery (Figure 1.7). In the mitochondria, Fe-S protein maturation occurs via two 

distinct stages. First, Fe(II) and sulfur are combined on a homodimeric scaffold protein 

(Isu) to form a labile Fe-S cluster. Once formed, the nascent Fe-S cluster is then transferred 

to its ultimate target protein via additional accessory proteins. In the initial stage, sulfur is 

obtained from free cysteine via the pyridoxal phosphate-dependent cysteine desulfurase 

Nfs1. Both yeast and human Nfs1 are mainly mitochondrial, although a portion of Nfs1 

localizes to the nucleus and cytosol in both systems. In yeast, the mitochondrial form is 

essential for both mitochondrial and cytosolic cluster assembly, while the cytosolic form 
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Figure 1.7. Mitochondrial and cytosolic Fe-S cluster assembly in yeast. (a) In the 

mitochondria, sulfur is obtained from the cysteine desulfurase Nfs1, interacting with Isd11. 

Nfs1 transfers sulfur as a persulfide to Isu1/2. (b) Iron is imported to the mitochondria by 

the transporters Mrs3/4 and possibly donated to Isu1/2 through frataxin (Yfh1 in yeast). (c) 

Electrons are donated by NADH through the ferredoxin-ferredoxin reductase pair Yah1-

Arh1 to reduce S0 to S2-. (d) The assembled Fe-S cluster is transferred to target proteins by 

a chaperone system consisting of Ssq1, Jac1, Mge1, and Grx5. (e) Isa1/2 specifically 

delivers clusters to aconitase-like proteins. (f) An unknown substrate (likely a form of 

glutathione persulfide) produced by the ISC machinery is exported out to the cytosol by 

the transporter Atm1. This process may also include the sulfhydryl oxidase Erv1, GSH, 

and Dre2. (g) Fe-S clusters are assembled in the cytosol on the scaffold complex formed 

by Cfd1 and Nbp35. (h) The assembled cluster is transferred to target cytosolic and nuclear 

proteins by Nar1 and Cia1. 
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may act as a sulfur donor for other pathways requiring mobilized sulfur, such as cytosolic 

tRNA thio-modification (Nakai et al, 2004). Nfs1 function is dependent on formation of a 

stable complex with a partner protein named Isd11, although the specific role of Isd11 is 

not clear. The Nfs1-Isd11 complex produces sulfane sulfur (S0) via persulfide formation, 

thus a source of electrons is required to reduce this molecule to sulfide (S2-) for Fe-S cluster 

synthesis. This electron transfer is most likely performed by the ferredoxin-ferredoxin 

reductase pair Yah1 and Arh1 in yeast (FDX1/2 and FDXR in humans) using electrons 

from NADH (Rouault, 2012; Lill and Muhlenhoff, 2008). 

It is clear that the Nfs1-Isd11 complex transfers sulfur to the Isu scaffold proteins 

(Isu1 and Isu2 in yeast, ISCU in humans). Similar to Nfs1, a small amount of human ISCU 

exhibits cytosolic localization where it may function as a scaffold for extramitochondrial 

Fe-S cluster biogenesis (Rouault, 2012; Lill and Muhlenhoff, 2008). The mechanisms of 

cluster assembly on scaffold proteins, including the order of Fe and S binding and the 

sources of iron, remain open questions. As far as iron delivery, one proposal is that Yfh1, 

the yeast homologue of human frataxin, delivers iron to the Isu proteins. Yfh1 was shown 

to bind iron in vitro, and to bind Isu1/Nfs1 in an iron- dependent manner in the 

mitochondria, possibly enabling iron transfer (Subramanian et al, 2011). More recently, 

frataxin was proposed to stabilize the active form of the Nfs1-Isd11-Isu complex thereby 

promoting sulfur transfer and enhancing Fe-S cluster formation (Bridwell-Rabb et al, 

2012).  

Once the cluster is assembled, it must be transferred from the scaffold to the target 

apoprotein. Bacterial U-type scaffolds (IscU, NifU) are capable of making and transferring 

both [2Fe-2S] and [4Fe-4S] clusters, thus eukaryotic Isu proteins may also be able to 
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assemble both types of clusters. The cluster transfer system is formed by the chaperone 

Ssq1 (an Hsp70 chaperone), a J-type accessory chaperone, Jac1, and the 

chaperone/nucleotide release factor, Mge1. While not required for cluster assembly on Isu 

proteins, depletion of these chaperones results in cluster accumulation on Isu1. This system 

most likely takes the transiently bound cluster from the Isu scaffold and inserts it into the 

target protein. The monothiol glutaredoxin Grx5 also may play a role in cluster transfer, as 

Grx5 depletion results in cluster accumulation on Isu1, although a specific role has not yet 

been determined. Studies on zebrafish and human forms of Grx5 show that it is important 

for cytosolic Fe-S assembly, and thus may regulate heme synthesis by facilitating Fe-S 

cluster assembly on IRP1 (Rouault, 2012; Lill and Muhlenhoff, 2008). Additional 

mitochondrial Fe-S biogenesis assembly factors (e.g. Isa1, Isa2, Iba57, BolA3, Nfu1, Ind) 

are proposed to function as intermediate scaffold/delivery proteins between ISCU and 

specific subsets of target proteins (Sheftel et al, 2010). 

In addition to the mitochondrial ISC system, yeast and mammalian cells have 

cytosolic iron-sulfur assembly (CIA) components that build clusters for cytosolic and 

nuclear proteins. Since the mitochondrial form of yeast Nfs1 is essential for both 

mitochondrial and cytosolic Fe-S cluster assembly, one theory is that the mitochondria 

exports a sulfur-containing substrate produced by the ISC machinery that is used by the 

CIA machinery to build and/or insert Fe-S clusters (Sheftel et al, 2010). In yeast, the ABC 

transporter Atm1 (ABCB7 in humans) is proposed to export the unidentified sulfur-

containing substrate (compound X) from the mitochondria to the cytosol since depletion of 

Atm1 inhibits cytosolic Fe-S assembly. A recent study also implicates the mammalian 

ABC transporter ABCB8 in export of mitochondrial iron for cytosolic Fe-S cluster 
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biogenesis (Ichikawa et al, 2012). The mitochondrial IMS-localized sulfhydryl oxidase 

Erv1 and the ubiquitous tripeptide GSH are also implicated in export of the sulfur-

containing substrate from the mitochondria for cytosolic Fe-S cluster assembly, (Lange et 

al, 2001; Sheftel et al, 2010). However, a recent study reported that the cytosolic Fe-S 

assembly defect reported for Atm1-depleted strains was an artifact of the strain background 

used in the initial report, indicating that Atm1 activity is not required for cytosolic Fe-S 

cluster assembly in yeast (Bedekovics et al, 2011). More recently, the identity of compound 

X was demonstrated to possibly involve some form of glutatihione. Atm1 and its 

homologue in plants, ATM3, were shown to be stimulated by and preferentially transport 

GSSG over GSH (Schaedler et al, 2014). Since an activated persulfide is required for Fe-

S assembly (S0 versus S2-), it was suggested that GSSG helps transport this intermediate. 

GS-S0H would be too reactive to export from the mitochondria. Instead, the persulfide may 

be transported more stably as GS-S-SG. Thus, GSH plays an intricate role in Fe-S cluster 

assembly and iron homeostasis. In addition, studies in human cells suggest that the 

cytosolic Fe-S cluster assembly machinery is independent of the mitochondrial system 

(Rouault, 2012).  

Regardless of the specific details regarding initial Fe-S cluster assembly in the 

cytosol and the requirement of the mitochondrial ISC system, it is clear that a number of 

additional proteins are essential for assembling Fe-S clusters for cytosolic/nuclear proteins. 

Two potential scaffold proteins are the P-loop NTPases Cfd1 and Nbp35 that form a [4Fe-

4S]-bridged heterotetramer. Yeast Nar1 (IOP1 and IOP2 in humans) is similar to bacterial 

iron hydrogenases, although it has no hydrogenase activity. Nar1 has two Fe-S clusters 

whose assembly requires the mitochondrial ISC systems, as well as Cfd1 and Nbp35. 
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Depletion of mammalian IOP1 disrupts cytosolic Fe-S cluster assembly, and homology of 

Nar1/IOP1/2 to other hydrogenases has led to the suggestion that these proteins may act as 

electron donors in the CIA system, either in assembly or transfer of a cluster. A fourth 

member of the CIA machinery is Cia1, which might play a role late in biogenesis after 

Nbp35 and Nar1, possibly in cluster transfer to target proteins. In addition, Dre2, which is 

localized to both the cytosol and the mitochondrial intermembrane space, was recently 

found to be a possible link between the mitochondrial ISC and cytosolic CIA systems. Dre2 

can be purified with both a [4Fe-4S] and a [2Fe-2S] cluster, which seem to play catalytic 

or structural roles based on cluster stability. Since depletion of Dre2 impairs cytosolic Fe-

S cluster assembly, it may work early in the CIA pathway and deliver the ISC system 

substrate necessary for cytosolic cluster assembly. The human homologue of Dre2, 

anamorsin (or CIAPIN1) is proposed to function in electron transfer in the CIA system, 

similar to Dre2. While the function appears conserved between yeast and humans, 

anamorsin only binds a [2Fe-2S] cluster (Banci et al, 2011). Currently, the only proteins 

known to require the CIA system bind [4Fe-4S] clusters (Sheftel et al, 2010; Sharma et al, 

2010), thus there may exist a parallel pathway for assembly of cytosolic [2Fe-2S] clusters 

such as those found on the Grx3/4 proteins (H Li et al, 2011). 

IRON UPTAKE, TRAFFICKING, AND STORAGE 

Iron Uptake and Transport in E. coli. Iron uptake in E. coli is divided into 

two systems that target either more soluble Fe2+ in the free form, or the poorly soluble Fe3+ 

bound as a complex. Direct uptake pathways generally target ferrous iron as it is more 

bioavailable, although some systems can transport ferric iron (Andrews et al, 2003). The 

Feo transporter system is most common for high-affinity ferrous iron uptake, consisting of 
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FeoA and FeoB proteins (Kammler et al, 1993). Other proteins such as ZupT and MntH 

function as more general divalent metal transporters for zinc, manganese, cobalt, and iron. 

ZupT is a ZIP-like protein that mainly acts as a zinc transporter, while the Nramp-like 

transporter MntH was originally identified in manganese uptake (Grass et al, 2002; Grass 

et al, 2005; Makui et al, 2000; Kehres et al, 2000). The EfeUOB system is involved in 

uptake of ferrous iron under aerobic and low pH growth conditions and is homologous to 

the yeast Ftr1-Fet3 system (Cao et al, 2007). Studies suggest that EfeO binds Fe2+ which 

is oxidized before transfer to the ferric permease EfeU at the inner membrane (Rajasekaran 

et al, 2010). EfeB likely accepts the electrons from iron before EfeU transporting it across 

the inner membrane (Figure 1.8). 

E. coli use siderophores for uptake of ferric iron through outer membrane receptors 

(Koster, 2001). Siderophore complexes are transported by the TonB-ExbB-ExbD system 

in the periplasm and the inner membrane and an ABC transporter facilitates transfer to the 

cytoplasm (Chu et al, 2010). Siderophores, such as the commonly studied ferrichrome and 

enterobactin, are synthesized in the cell then secreted to the environment with transport 

proteins across the inner and outer membranes (Furrer et al, 2002). Siderophore-iron 

complexes are taken up by receptors in the outer membrane using the TonB system (Koster 

et al, 2001). There is a range of siderophore receptors with different specificities which can 

also take up siderophores produced by other species (Andrews et al, 2003). Siderophore-

iron complexes are then transported across the periplasm to the cytoplasm by periplasmic 

binding proteins and inner membrane transporters. Iron is released from the siderophore 

via reduction by ferric reductases, or by hydrolysis of the siderophore backbone (Fontecave 

et al, 1994; Schroder et al, 2003; Harrington and Crumbliss, 2009). 



www.manaraa.com

 

31 
 

 

 

 

 

 

 

 

Figure 1.8. Iron uptake systems in E. coli. An outer membrane (OM) receptor in the TonB 

system takes up Fe-siderophore complexes (Enterobactin or Ent shown here) to the 

periplasm. An inner membrane (IM) permease allows transport of the Fe-siderophore 

complex to the cytoplasm, where iron is then released. FeoA and FeoB are high-affinity 

ferrous iron transporters. ZupT and MntH are capable of transporting ferrous iron as well 

as other divalent metals like zinc, manganese, and cobalt. EfeO binds ferrous iron, which 

is oxidized before transport to EfeU. EfeB accepts electrons from the oxidation of iron, and 

EfeU is a ferric permease that transports iron across the IM to the cytoplasm. 
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Iron Uptake and Transport in Yeast. The budding yeast S. cerevisiae expresses an 

extensive system of membrane transporters for uptake of environmental iron (Figure 1.9). 

As previously mentioned, yeast have the ability to scavenge iron-loaded siderophores from 

their surroundings. Arn1, Taf1, Sit1, and Enb1 (also known as Arn1-4, respectively) are 

transporters specific for Fe3+-siderophore complexes. Environmental Fe3+ is reduced to the 

more soluble Fe2+ by the ferrireductases Fre1 and Fre2, which are also capable of reducing 

Cu2+. Once reduced, Fe2+ can be imported by the high-affinity uptake system encoded by 

FET3 and FTR1. Fet3 is a multicopper oxidase that oxidizes the Fre1/2-produced Fe2+ to 

Fe3+, which is then transferred across the plasma membrane by the transmembrane 

permease Ftr1. In addition, yeast possess low-affinity iron transporters (Fet4 and Smf1) 

that can also transport other transition metals. Fet4, in addition to being a low-affinity iron 

transporter, can import copper and zinc, and is responsible for most of the uptake under 

iron-replete conditions. Smf1, a member of the NRAMP transporter family found in both 

prokaryotes and eukaryotes, is a H+/M+ symporter that uses a pH gradient to import 

transition metals such as Fe2+, Mn2+, and Zn2+. Yeast express two other NRAMP proteins, 

Smf2 and Smf3, although they do not seem to play a significant role in environmental iron 

uptake. In addition to these uptake systems, the yeast genome encodes transmembrane 

ATP-driven H+ transporters to acidify the environment, which increases the solubility of 

Fe3+ (Kaplan and Kaplan, 2009; Bleackley and Macgillivray, 2011). 

After cells have imported iron, it needs to be transported either for storage or 

utilization. Since free iron is redox-active and can damage proteins and membranes, it 

seems likely that cells would use a chaperone to bind and transport iron through the cell. 

In yeast, the cytosolic monothiol Grxs with a signature CGFS active site, Grx3 and Grx4,  
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Figure 1.9. Iron uptake systems in S. cerevisiae. Arn1, Sit1, Enb1, and Taf1 are 

transporters for Fe3+-siderophore complexes. The ferrireductases Fre1/2 reduce 

environmental Fe3+ to Fe2+. Fet3 and Ftr1 form the high-affinity iron uptake system. Fet3 

oxidizes Fe2+ to Fe3+ and Ftr1 transports this across the plasma membrane. Fet4 is a low-

affinity transporter responsible for uptake under iron-replete conditions. Smf1, a member 

of the NRAMP family of transporters, is a H+/M+ symporter for some transition metals like 

Fe2+, Mn2+, and Zn2+. Aft1 and Aft2 are transcriptional regulators that activate expression 

of the iron regulon, including these iron uptake systems, under low iron conditions.  
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are suggested to have an essential role in cellular iron trafficking. Depletion of Grx3/4 leads 

to defects in iron-dependent proteins independent of induction of the Aft1 iron uptake 

system. Although these cells had excess cytosolic iron, iron delivery is impaired. Grx3/4 

have previously been shown to bind a [2Fe-2S] cluster in a homodimeric complex. Not 

only is this Fe-S cluster essential for their role in iron trafficking, it is also required in iron 

sensing and regulation of the transcription factors Aft1 and Aft2 (Muhlenhoff et al, 2010; 

Kumanovics et al, 2008; H Li et al, 2009).  

The fission yeast S. pombe has a similar high-affinity transport system to S. 

cerevisiae. The ferrireductase Frp1 is homologous to Fre1/2 and reduces extracellular Fe3+ 

to Fe2+ (Roman et al, 1993). This iron is then transported into the cell by a complex of Fio1 

and Fip1 (Askwith and Kaplan, 1998). Fio1, homologous to Fet3, acts as an oxidase and 

Fip1, homologous to Ftr1, is a transmembrane permease. Unlike S. cerevisiae, S. pombe 

can also produce and excrete their own siderophore, ferrichrome (Schrettl et al, 2004). The 

proteins Sib1 and Sib2 are involved in synthesis of ferrichrome. There are three 

siderophore transporters on the cell surface, Str1, Str2, and Str3, which have specificities 

for different iron-siderophore complexes (Pelletier et al, 2003). 

Iron Uptake and Transport in Mammalian Cells. In mammalian cells, 

absorption of dietary iron occurs in the intestine through the brush border of duodenal 

enterocytes. Inorganic iron mainly comes from vegetables, while heme iron comes from 

degradation of hemoglobin and myoglobin in red meat. The divalent metal transporter 1 

(DMT1) also known as SLC11A1, is an NRAMP family protein that carries inorganic iron 

across the apical membrane into enterocytes. The ferric reductase Dcytb (duodenal 

cytochrome b) is required to reduce Fe3+ to Fe2+ prior to uptake by DMT1 since dietary 



www.manaraa.com

 

35 
 

inorganic iron is primarily in the oxidized form in the acidic environment of the duodenum. 

The mechanisms for uptake of dietary heme, which is absorbed more efficiently that 

inorganic iron, are somewhat nebulous. One possible candidate for dietary heme uptake is 

heme carrier protein HCP1 (Shayeghi et al, 2005). After internalization, heme iron is 

released into the enterocyte cytosol by heme oxygenase-1 (HO-1) via degradation of the 

heme molecule. Cytosolic iron is either stored in ferritin (see below) or exported across the 

basolateral membrane into the circulation by the ferrous iron exporter ferroportin (FPN). 

In enterocytes, FPN functions in concert with the multicopper oxidase hephaestin, which 

oxidizes exported Fe2+ to Fe3+ to facilitate iron loading onto the plasma iron carrier 

transferrin (Kaplan and Kaplan, 2009). Many other mammalian cell types also have the 

ability to export iron via FPN, including macrophages and hepatocytes. The plasma 

multicopper oxidase ceruloplasmin functions with FPN in these cell types in an analogous 

manner to hephaestin (Anderson and Vulpe, 2009). 

Transferrin (Tf) binds two ferric ions with high affinity, providing iron for most 

human cell types (Figure 1.10). Iron-bound Tf is imported into the cell through the cell 

surface Tf receptor 1 (TfR1), forming a complex that is internalized by endocytosis. ATP-

dependent proton pumps acidify the resulting endosome so iron is released from Tf, 

although this release likely also requires reduction of the iron to Fe2+. Members of the 

STEAP (six-transmembrane epithelial antigen of the prostate) protein family are ferric 

reductases that catalyze this reaction. Apo-Tf is reutilized after delivery to the plasma 

membrane and released back into the circulation. The freed ferrous iron is then transported 

from the endosome to the cytoplasm via DMT1 (Anderson and Vulpe, 2009). In addition 

to Tf-iron, some mammalian cells can utilize hemoglobin iron from degraded erythrocytes.  
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Figure 1.10. Iron import and export in a generic mammalian cell. The plasma protein 

transferrin (Tf) binds 2 ferric ions for uptake by the transferrin receptors (TfR-1 and TfR-

2). TfR-1 is found in all cell types, while TfR-2 is limited to liver, intestinal, and red blood 

cells. Tf(Fe3+)
2-bound TfR is internalized by endocytosis and ferric iron is released in the 

acidic environment of the endosome. Tf and TfR are recycled to the plasma membrane. 

DMT1 is involved in release of Tf iron from the endosome following reduction of Fe3+ to 

Fe2+ by STEAP ferriredutases. Dcytb (cytochrome b-like ferrireductase) reduces dietary 

Fe3+ to Fe2+, which is imported by DMT1 at the plasma membrane. The plasma proteins 

haptoglobin and hemopexin bind hemoglobin and free heme, respectively, produced by 

erythrocyte destruction. Haptoglobin-hemoglobin and heme-hemopexin complexes are 

recognized by CD163 and CD91 receptors, respectively, for subsequent endocytosis. Heme 

is also imported via HCP-1 and HRG-1. HO-1 (heme oxygenase-1) catalyzes degradation 

of the heme to remove iron. Imported iron can be stored in ferritin or trafficked to the 

mitochondria for synthesis of heme and Fe-S clusters. FPN is the iron exporter, transporting 

Fe2+ out of the cell. Ceruloplasmin (Cp) oxidizes this Fe2+ to Fe3+ for binding to Tf. 
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Senescent red bloods cells (RBCs) are phagocytosed by macrophages in order to recycle 

body iron. Hemoglobin binds to the plasma protein haptoglobin, which then binds to 

CD163 on the surface of monocytes and macrophages. Similar to uptake of Tf-iron, this 

complex undergoes endocytosis before being broken down for iron release. The released 

heme iron can then bind to another plasma protein, hemopexin, which is endocytosed 

following binding to the CD91 receptor of certain cells (Schultz et al, 2010). The 

transmembrane protein HRG-1 has also been implicated in heme import (Rajagopal et al, 

2008). 

Once iron is delivered to the cytoplasm, it must be transferred to various sites for 

utilization and storage. When iron concentrations exceed cellular need, iron is deposited in 

the iron storage protein ferritin (see below). Iron is most likely trafficked via a chaperone 

so that it cannot prematurely react with cellular components. While no general iron 

chaperone has been confirmed yet, several possible candidates have been identified. Poly 

(rC) binding protein 1 (PCBP1) was shown to facilitate iron loading to ferritin; however, 

the exact mechanism of delivery is not yet characterized (Subramanian et al, 2011). In 

addition, PCBP1 and its homologue PCBP2 were shown to act as iron chaperones to the 

iron-dependent enzymes HIF prolyl hydroxylases and factor inhibiting HIF (FIH1).  As 

with the ferritin-PCBP1 interaction, the mechanism of iron delivery is not known; however, 

it seems likely that the PCBPs interact with their targets post-translationally for iron 

incorporation. Whether this takes place in the nucleus or the cytosol remains to be seen 

(Nandal et al, 2011). The human ortholog of yeast Grx3/4, GLRX3, shares high sequence 

similarity with its yeast counterparts and forms analogous [2Fe-2S] bridged homodimers 
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(Haunhorst et al, 2010; H Li et al, 2012), thus human GLRX3 may play a similar role as 

an iron chaperone. 

Iron Storage Proteins.  Intracellular iron that is not immediately utilized is directed 

to iron storage proteins. Both humans and E. coli express ferritin, and bacteria also produce 

bacterioferritin and Dps proteins (Tosha et al, 2010). Ferritin self-assembles into a protein 

nanocage composed of 24 heavy (H) and light (L) subunits housing ferric oxide 

biominerals, with an average of 1000-2000 iron atoms stored per ferritin cage. During 

intracellular iron overload, ferritin iron levels can reach 3000-4000 iron atoms/nanocage, 

leading to formation of insoluble material from damaged ferritin known as hemosiderin. 

Several recent studies have unveiled the unique structural properties of ferritin that 

facilitate mineral nucleation during iron entry (Theil, 2011). Each H subunit binds two 

ferrous ions in the ferroxidase active site that combine with O2 to form the di-Fe(III)O 

mineral precursor (Ilari et al, 2000). Crystal growth is achieved as the mineral precursors 

from each active site coalesce during movement into the central cavity. Release of ferritin 

iron back into bioavailable cytosolic pools occurs via proteasomal or lysosomal 

degradation of the ferritin nanocage (Wang and Pantopoulos, 2011). In addition, iron may 

also be released from ferritin via a non-destructive pathway involving reduction and 

dissolution of the ferric oxide biomineral (Theil, 2011). 

In bacteria, ferritin (FtnA) stores iron under favorable growth conditions. 

Bacterioferritin (Bfr) is more common in bacteria, and contains heme, although the purpose 

of the heme is unclear (Andrews et al, 2003; Andrews et al, 1995). Iron release is mediated 

by Bfr-associated ferredoxin, which acts as a reductase using a [2Fe-2S] cluster (Quail et 

al, 1996). In E. coli, FtnA and Bfr play a major role in iron storage and reduce redox stress 
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by limiting free iron in the cell (Andrews, 1998; Abdul-Tehrani et al, 1999). Dps (DNA-

binding protein from starved cells) proteins have a similar structure to ferritin, although 

with 12 subunits instead of 24. They can bind around 500 Fe atoms per Dps protein. They 

also use ferroxidase sites to oxidize Fe2+ to Fe3+ for storage, though H2O2 is used instead 

of O2 in this case (Gauss et al, 2012; Ilari et al, 2002). Using H2O2 reduces formation of 

the hydroxyl radical, thus Dps proteins play a large role in protecting DNA from oxidative 

damage (Calhoun and Kwon, 2011). 

A mitochondrial version of ferritin is also expressed in some human cell types. 

Mitochondrial ferritin is similar in sequence and structure to ferritin, but possesses 

relatively weak ferroxidase activity (Bou-Abdallah et al, 2005). Nevertheless, 

mitochondrial ferritin overexpression was shown to reduce production of reactive oxygen 

species while promoting mitochondrial iron loading and cytosolic iron depletion 

(Santambrogio et al, 2011). However, the increased mitochondrial iron in cells 

overexpressing mitochondrial ferritin is less bioavailable for heme and Fe-S cluster 

biogenesis (Richardson et al, 2010). Interestingly, mitochondrial ferritin transcription does 

not seem to be regulated by iron, but rather by the oxidative metabolic activity demand. 

Taken together, these studies thus suggest that mitochondrial ferritin functions to sequester 

redox-active iron in this organelle and highlight the importance of the mitochondrion in 

regulation of whole cell iron metabolism (Richardson et al, 2010; Huang et al, 2011). 

Iron Transport into Yeast Vacuoles. As mentioned earlier, in addition to 

mitochondria, the vacuole is the other major hub of iron metabolism in S. cerevisiae. As 

yeast do not contain ferritin for iron storage, the vacuole is designed to serve this purpose. 

The acidic pH in vacuoles, which ranges from 4.5-5.5, permits increased iron solubility, 
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and is regulated by ATP-driven proton pumps. Iron is imported from the cytosol to the 

vacuole through the transporter Ccc1 (Pcl1 in S. pombe), found in the vacuolar membrane. 

In addition to being an iron (and manganese) storage organelle, vacuoles help protect cells 

from the toxic effects of excess iron by sequestering it in an unreactive form (L Li et al, 

2001). The protein complexes involved in iron export from the vacuole are comparable to 

the cell surface iron import machinery. A member of the FRE family, Fre6, is localized to 

the vacuole where it acts as a ferrireductase in exporting iron from the vacuole. Fre6 works 

in combination with the Fet5-Fth1 ferrous iron transport complex, which is analogous to 

the cell surface Fet3-Ftr1 import complex. Smf3, another member of the NRAMP family 

and homologous to Smf1, is also found in the vacuolar membrane. Smf3 and Fet5-Fth1 all 

work downstream from Fre6 in iron export from the vacuole (Bleackley and Macgillivray, 

2011; L Li et al, 2001; Philpott and Protchenko, 2008; Singh et al, 2007). S. pombe do not 

contain homologues to Fet5-Fth1 for vacuolar iron export. Instead, they utilize Abc3, a 

transmembrane ABC transporter (Decottignies and Goffeau, 1997; Paumi et al, 2008). 

Iron Transport into Lysosomes. In mammalian cells, lysosomes play a 

significant role in iron recycling as the primary site for degradation of cytosolic ferritin. 

These organelles containing acidic hydrolases that store and degrade biological waste 

produced by the cell, including damaged proteins and organelles. Much of the material 

taken up by lysosomes contains iron, mainly derived from ferritin and respiratory 

complexes. Iron concentrations in lysosomes can vary greatly depending on how much 

material has been taken up, and if iron-rich compounds have recently been degraded. 

Lysosomes with higher iron content tend to be more susceptible to oxidative stress and 

destabilization. Fenton chemistry becomes more likely under the favorable lysosomal 
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conditions of an acidic pH and the availability of reducing equivalents. Oxidative damage 

to membranes can cause leaky lysosomes, which exposes other cellular components to the 

harmful materials contained in this organelle (Kurz et al, 2011). 

Iron Transport into the Endoplasmic Reticulum. As mentioned earlier, studies 

suggest that the ER may acquire heme via direct contact with the mitochondrion (Schultz 

et al, 2010). The existence of non-heme iron enzymes in the mammalian ER, such as prolyl 

and lysyl hydroxylases, suggests that ionic iron is also transported into the ER and/or Golgi. 

Although the yeast genome does not encode homologues for these enzymes, prolyl 

hydroxylases heterologously expressed in S. cerevisiae are correctly targeted and 

enzymatically active, demonstrating iron delivery to the secretory pathway (Toman et al, 

2000). In addition, iron-free ferritin monomers are translocated into the ER in yeast and 

mammalian cells (De Domenico et al, 2011), and iron-loaded ferritin is detected in the 

secretory pathway of Drosophila cells (Missirlis et al, 2007). Taken together, these studies 

provide evidence that ionic iron is transported into the ER/Golgi compartment in both 

lower and higher eukaryotes (De Domenico et al, 2011). However, specific ER iron 

transporters for either yeast or mammalian cells have not yet been identified.  

Iron Transport into the Nucleus. Numerous nuclear proteins contain heme, 

non-heme iron, or Fe-S cluster cofactors that are necessary for their activity. Examples of 

heme-binding nuclear proteins include the nuclear receptor Rev-ervα and the 

transcriptional repressor Bach1 (Severance and Hamza, 2009), while diiron-binding 

nuclear proteins include ribonucleotide reductases (RNRs) and HIF prolyl hydroxylases. 

A growing list of Fe-S proteins involved in DNA repair, DNA replication, and 

transcriptional elongation are also localized to the nucleus [40]. In each of these cases, it is 
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not known whether iron cofactor acquisition and assembly occurs before or after entry in 

the nucleus. Nevertheless, a chelatable, labile iron pool similar in concentration to the 

cytosolic labile iron pool has been detected in mammalian nuclei (Petrat et al, 2001), thus 

nuclear iron is bioavailable for insertion into iron metalloproteins if necessary. Nuclear 

ferritin has also been detected in some mammalian cells types, demonstrating the capacity 

of this organelle to store and sequester DNA-damaging, redox-active iron (Alkhateeb and 

Connor, 2010). The specific mechanisms by which iron enters the nucleus are unclear. 

Labile iron bound to low molecular weight ligands may freely diffuse through nuclear 

pores. Alternatively, there is evidence that iron is actively transported across the nuclear 

membrane via an ATP-dependent transport system (Gurgueira and Meneghini, 1996).  

REGULATION OF IRON  

Transcriptional Regulation 

E. coli Fur. In order to regulate iron uptake and metabolism in the cell, E. coli 

and many other bacteria utilize the global transcription factor ferric uptake regulator (Fur) 

protein. Fur regulates siderophore biosynthesis and transport genes (IucABCD and 

FhuACDB), iron uptake (FecIR), metabolism (aconitase, fumarase, and bacterioferritin), 

oxidative stress response (SodB), and virulence factors (Hantke, 2001). Genes that are 

directly regulated by Fur have two or more 19-basepair Fur binding boxes: 

GATAATGATAATCATTATC (Escolar et al, 1999). When Fur binds to this region, 

transcription of the genes is blocked. Fur acts as a positive repressor, it only has represses 

transcription when bound to its co-repressor Fe2+ (Coy and Neilands, 1991; Escolar et al, 

2000). Under iron limiting conditions, these genes are derepressed. Certain genes, such as 
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SodB and aconitase, do not contain Fur boxes and are indirectly regulated by Fur through 

the regulatory RNA RyhB (more under Post-Transcriptional Regulation). 

The Fur protein is very abundant at about 5000 copies per cell, and is composed of 

two domains (Zheng et al, 1999). The N-terminal domain contains the helix-turn-helix 

DNA-binding motif, while the C-terminal domain is involved in binding Fe2+ and Zn2+ 

(Althaus et al, 1999; Adrait et al, 1999). When cells have sufficient iron, Fur binds Fe2+ 

and can repress transcription of genes responsible for iron acquisition, respiration, redox 

stress, and DNA synthesis (Stojiljkovic et al, 1994; Vassinova and Kozyrev, 2000). The 

fur gene is induced by OxyR during H2O2 stress as well as by NorR and reactive nitrogen 

species in order to limit the amount of free iron that could exacerbate oxidative damage 

(Lavrrar et al 2002; Mukhopadhyay et al, 2004). 

E. coli IscR. IscR is an Fe-S cluster responsive transcriptional repressor 

responsible for maintaining the pool of Fe-S proteins (Bodenmiller and Spiro, 2006; Py et 

al, 2011). It is encoded in the ISC operon and is regulated by binding a [2Fe-2S] cluster 

(Schwartz et al, 2001). This cluster is ligated by three cysteine residues and one histidine, 

which may destabilize cluster binding as a role in Fe-S sensing (Nesbit et al, 2009; 

Fleischhacker et al, 2012). IscR regulates around 40 genes, including the ISC and SUF 

operons, Fe-S carriers, other Fe-S proteins, and non-Fe-S proteins involved in structure of 

the cell surface (Giel et al, 2006; Roche et al, 2013). There are two types of IscR binding 

sites found in these genes: holo-IscR binds Type 1 sites better than the apo form, while 

holo- and apo-IscR have similar affinities for Type 2 sites (Nesbit et al, 2009; Giel et al, 

2006). The ISC operon (including IscR) has a Type 1 binding site (Giel et al, 2006; Giel et 

al, 2012). When IscR is in the apo form due to a lack of Fe-S clusters, the ISC operon is 
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derepressed. The SUF operon has a Type 2 binding site, thus apo-IscR activates expression 

of the Suf machinery (Nesbit et al, 2009). Under conditions of iron limitation or oxidative 

stress, IscR in the the apo form, allowing induction of the ISC and SUF operons (Yeo et 

al, 2006; Lee et al, 2008; Outten et al, 2004). 

S. cerevisiae Hap1. S. cerevisiae regulate iron homeostasis via transcriptional, 

post-transcriptional, and post-translational mechanisms. At the transcriptional level, yeast 

utilize several regulatory factors that respond not only to cellular iron status, but also 

oxygen levels. Yeast use heme as an oxygen sensor to differentiate between aerobic and 

anaerobic growth conditions. Heme is well-suited to this role since it not only binds to 

oxygen, but the synthesis of porphyrin for heme depends on oxygen availability. Lower 

oxygen levels lead to decreased heme synthesis, which in turn decreases synthesis of 

respiratory proteins. The transcriptional activator Hap1 controls this process in S. 

cerevisiae. Hap1 is a heme-binding protein that activates transcription of respiratory 

proteins under normal oxygen levels, as well as the repressor Rox1. Rox1 then represses 

transcription of genes involved in anaerobic growth. Under low or no oxygen conditions 

when heme synthesis is attenuated, Hap1 is inactive, thus aerobic metabolism genes are 

turned off and anaerobic genes are turned on. Neither Hap1 nor Rox1 has any effect on 

transcription of the iron regulon (more below) (Kaplan et al, 2006). 

S. cerevisiae Aft1 and Aft2. In Saccharomyces cerevisiae, expression of high 

affinity ionic iron and siderophore transporters is primarily controlled by the transcriptional 

activator Aft1 and to a lesser extent, its paralog Aft2. In addition to these transporters, Aft1 

and Aft2 control several other genes that together comprise the iron regulon. The iron 

regulon includes genes encoding the high affinity iron transport system (FET3, FTR1, 
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CCC2, ATX1, FRE1-FRE6), the siderophore transport system (ARN1-4, FIT1-3), and 

vacuolar iron export systems (SMF3, FET5, FTH1) (Kaplan and Kaplan, 2009). Aft1/2 

nuclear localization is controlled by the cellular iron status: in iron-starved cells, Aft1/2 

accumulates in the nucleus, while under iron-replete conditions, Aft1/2 is shuttled to the 

cytosol by the exportin Msn5. Aft1/2 localization is regulated by a complex formed of 

Grx3/4, Fra1, and Fra2 proteins, which transmits an inhibitory signal that is dependent on 

the synthesis of mitochondrial Fe-S clusters (Kaplan et al, 2006). Aft mutants are unable 

to grow on iron-poor media, although this is not primarily due to a malfunctioning iron 

uptake system, but rather the lack of control of intracellular iron use. This misuse of iron 

also renders cells more sensitive to oxidative stress, most likely due to metal toxicity and 

formation of ROS (Blaiseau et al, 2001; Rutherford and Bird, 2004; Rutherford et al, 

2003).  

Aft1 and Aft2 have both overlapping and independent functions. Many iron regulon 

genes are induced by both Aft1 and Aft2; although in most cases, Aft1 activation elicits a 

stronger response. Aft1 and Aft2 regulate gene expression by binding to iron-responsive 

elements (FeREs) with the conserved sequence 5′-CACCC-3′. However, Aft1 binds more 

selectively than Aft2 since it preferentially binds 5′-TGCACC-3′, while Aft2 prefers 5′-

G/ACACC-3′. Transcriptional analysis of Aft1 and Aft2 target genes suggest that Aft1 is 

primarily involved in cellular iron uptake, while Aft2 specifically regulates intracellular 

trafficking to vacuoles and mitochondria (Rutherford et al, 2003; Courel et al, 2005). 

However, biophysical analysis of iron speciation in yeast mutants that express 

constitutively active forms of Aft1 or Aft2 suggests that the Aft proteins do not regulate 

trafficking of cytosolic iron into mitochondria and vacuoles (Miao et al, 2011).  
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S. cerevisiae Yap5. The regulatory functions of the low iron-sensing 

transcriptional activators Aft1/Aft2 are also complemented by a high iron-sensing 

transcriptional activator named Yap5. Under high iron conditions, Yap5 activates 

expression of the vacuolar iron transporter Ccc1 resulting in increased iron transport into 

the vacuole, which effectively lowers cytosolic iron levels (L Li et al, 2011). Yap5 binds 

to the CCC1 promoter independent of iron levels, but only induces expression under high-

iron conditions via formation of an intramolecular disulfide bond (L Li et al, 2011; L Li et 

al, 2008). A recent microarray study identified a handful of Yap5-regulated genes, 

including TYW1, GRX4, and CUP1. Tyw1 is an Fe-S enzyme involved in modification of 

tRNA bases; however, the catalytic function of Tyw1 is not implicated in iron response. 

Instead, the data suggests that Yap5 protects the cell from excess iron by increasing Tyw1 

levels, which sequesters iron into Fe-S clusters. It is possible that upregulation of Grx4 

expression has a similar effect since this [2Fe-2S]-binding protein is implicated in iron 

trafficking (Muhlenhoff et al, 2010). CUP1 encodes a Cu-binding metallothionein that is 

important for resistance to copper toxicity (Winge et al, 1985). Interestingly, biophysical 

studies indicate that Cup1 also binds four Fe2+ atoms/monomer in vitro (Ding et al, 1994), 

and thus may also play a role in iron sequestration under toxic iron conditions. Taken 

together, these studies suggest that Yap5 responds to high cellular iron levels by decreasing 

free cytosolic iron through sequestration in vacuoles or incorporation into Fe- or Fe-S 

cluster-binding proteins (L Li et al, 2011).  

S. pombe Fep1. Fep1 is a member of the GATA factor family, transcription 

factors with a zinc finger  that bind to the general sequence 5’-GATA-3’. Found in 

Schizosaccharomyces pombe, Fep1 is a transcriptional repressor, turning off target genes 
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with the consensus sequence 5’-(A/T)GATAA-3’ under iron-replete conditions. It has two 

all-Cys zinc fingers, only one of which is required for binding to the GATA motif. The 

second zinc finger is necessary for repression, possibly forming in interaction domain with 

another protein, or increasing affinity of Fep1 for target DNA. Under high iron conditions, 

Fep1 turns off expression of genes involved in iron uptake and export from the vacuole. 

DNA-binding studies suggest that Fep1 requires iron for binding to target GATA 

sequences, and addition of chelating agents eliminates this binding. In addition, purified 

recombinant Fep1 only has DNA-binding activity if the protein is expressed in cells grown 

with iron, and other GATA factors have been shown to purify with iron bound. Fep1 has 

the ability to dimerize, and it was shown that inhibition of dimer formation decreased 

transcription repression. While the reason for this dimerization is not clear, it may help in 

recruiting more Fep1 proteins to promoters with multiple GATA sites (Rutherford and 

Bird, 2004; Labbé et al, 2007). 

S. pombe Php4. While Schizosaccharomyces pombe activate Fep1 when 

cellular iron levels are sufficient, they also have a system dedicated to gene regulation 

under low iron conditions. S. pombe utilize an oligomeric complex to repress transcription 

of genes involved in iron storage and Fe-S cluster assembly. Promoters for these genes 

contain the sequence 5’-CCAAT-3’, which is found in many other organisms. In S. 

cerevisiae, CCAAT-regulated genes are controlled by the Hap complex, comprised of 

Hap2, Hap3, Hap4, and Hap5. Homologues of these proteins are found in S. pombe: Php2, 

Php3, Php4, and Php5, respectively. Where Hap4 was found to be involved in gene 

regulation under aerobic growth, Php4 represses expression of iron-utilizing or storage 

proteins under iron deficiency. Expression of Php2, Php3, and Php5 proteins is constitutive, 
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and these form a heterotrimer that can bind DNA. Php4 itself does not have DNA-binding 

activity, but instead binds to the Php2/Php3/Php5 complex and is responsible for 

transcriptional repression (Labbé et al, 2007). 

The Php4 promoter contains a GATA sequence, and is regulated in an iron-

dependent manner by Fep1. Under low iron conditions, Fep1 is inactivated, and cannot 

repress Php4 transcription. Php4 can then form a complex with Php2, Php3, and Php5 and 

block expression of genes involved in iron utilization, such as components of the TCA 

cycle and the mitochondrial electron transport chain. When cells have enough iron, Fep1 

is activated, and represses transcription of Php4. Without Php4, the Php2/Php3/Php5 

complex can activate expression of genes (Labbé et al, 2007; Mercier and Labbé, 2009). 

The Fep1 promoter contains the CCAAT sequence recognized by Php4, which represses 

expression of Fep1 under iron-deplete conditions. Thus, Fep1 and Php4 have a mutual 

control over the other’s gene expression (Mercier et al, 2008). 

Mammalian HIF-2α. Unlike the transcriptional regulation of iron uptake and 

storage genes in yeast, studies suggest that mammalian cellular iron homeostasis is 

primarily regulated by post-transcriptional control of mRNA translation and stability. 

However, iron-dependent regulation at the transcriptional level was recently implicated in 

control of intestinal iron absorption. As described previously, mammalian enterocytes 

control iron import and export by regulating levels of the ferric reductase DcytB and iron 

importer DMT1 located at the apical membrane, as well as the basolateral iron exporter 

FPN. While the peptide hormone hepcidin is the main regulator of FPN, the hypoxia-

inducible factor HIF-2α (also known as EPAS1) controls expression of DctyB and DMT1. 

Under iron deficiency or hypoxic conditions, HIF-2α forms a heterodimeric complex with 
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HIF-1β, also known as aryl hydrocarbon nuclear receptor (ARNT), which induces 

transcription of both DcytB and DMT1. When iron levels are sufficient, HIF-2α is 

degraded and does not activate expression of the iron absorption genes (Mastrogiannaki et 

al, 2009).   

Post-transcriptional Regulation 

RyhB in E. coli. Certain genes in E. coli do not contain a Fur box, but are 

regulated indirectly by Fur through the small regulatory RNA RyhB (Nandal et al, 2010). 

These genes include aconitase and fumarase from the TCA cycle, sodB, and 

bacterioferritin. Expression of RyhB is repressed by Fur-Fe2+ when iron levels are 

sufficient (Massé and Arguin, 2005). When cellular iron is low, RyhB is expressed and 

binds at the ribosomal binding site of target mRNAs to cause degradation, in turn down-

regulating non-essential use of iron (Massé and Arguin, 2005; Massé and Gottesman, 

2002). This occurs with the assistance of the RNA chaperone Hfq, which is essential for 

RyhB to bind RNA (Geissmann and Touati, 2004). RyhB also works in concert with IscR, 

stabilizing iscR mRNA while degrading iscSUA mRNA, allowing cells to interchange 

between the SUF and ISC systems under low iron conditions (Desnoyers et al, 2009). 

Cth1 and Cth2 in Yeast. In addition to activation of iron uptake and transport 

genes by Aft1 and Aft2, iron deficiency in S. cerevisiae also leads to reprogramming of 

iron-dependent metabolic pathways in order to preserve limited iron pools for essential 

pathways (Kaplan and Kaplan, 2009; Philpott et al, 2012). This metabolic reprogramming 

is primarily accomplished by two mRNA binding proteins, Cth1 and Cth2, whose 

expression is upregulated by Aft1/2 under low iron conditions. Both proteins bind to the 3′ 

untranslated regions of mRNAs encoding iron-utilizing proteins in non-essential pathways, 
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thereby facilitating their degradation (Puig et al, 2008; Puig et al, 2005). Cth1 and its 

paralog Cth2 are tandem zinc finger (TZF) proteins related to the mammalian protein 

tristetraprolin (TTP). Similar to TTP, Cth1/2 binds to AU-rich elements (ARE) in target 

mRNAs. Cth2 binds to mRNAs that encode enzymes in heme biosynthesis, Fe-S cluster 

biosynthesis, the TCA cycle, the electron transport chain, and components of fatty acid 

metabolism pathways. Gene targets of Cth1 are mainly mitochondrial proteins involved in 

respiration and amino acid synthesis. Cth1 shares a subset of target genes with Cth2, 

including some involved in oxidative phosphorylation (Puig et al, 2008; Puig et al, 2005; 

Kaplan and Kaplan, 2005). 

Cth1 and Cth2 regulation helps to redistribute iron to vital processes under iron 

starvation. One of the enzymes that receives the limited iron is ribonucleotide reductase 

(RNR). RNR is composed of a large R1 subunit that houses the catalytic site and a small 

R2 subunit that contains the diferric tyrosyl radical cofactor. One facet of RNR regulation 

in yeast involves subcellular localization, since the R1 subunit is primarily localized to the 

cytosol while the R2 subunit residues in the nucleus under normal conditions. During 

genotoxic stress, the iron-containing R2 subunit is exported to the cytosol allowing 

assembly of the active, holo enzyme (Yao et al, 2003). Nuclear localization of the R2 

subunit depends on an interaction with the nuclear protein Wtm1. Interestingly, the R2 

subunit is also shuttled to the cytoplasm under iron deficient conditions, suggesting that 

the limited available iron is partly funneled to this essential enzyme. Iron-responsive 

transport of R2 to the cytoplasm is dependent on Cth1 and Cth2, which are responsible for 

binding to AREs in the WTM1 mRNA and degrading it in response to low iron. Cth1 and 

Cth2 enhance RNR activity not only by facilitating relocalization, but also by degrading 
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mRNA of nonessential iron-dependent pathways to increase available iron. In addition, 

Cth1 and Cth2 degrade new RNR transcripts to optimize the use of the limited iron 

available in the redistributed RNR enzymes (Sanvisens et al, 2011). 

Iron-Responsive mRNA-Binding Proteins in Mammalian Cells. In contrast to 

yeast, iron uptake and storage in mammalian cells is mainly regulated at the post-

transcriptional level through two iron regulatory proteins, IRP1 and IRP2 (Wang and 

Pantopoulos, 2011; Recalcati et al, 2010; Rouault, 2006). Under iron-depleted conditions, 

IRP1 and IRP2 bind to iron response elements (IREs) that form hairpin structures in the 5′ 

or 3′ untranslated regions (UTRs) of their target mRNAs. IREs are found in mRNAs 

encoding a variety of proteins involved in iron metabolism, including ferritin, TfR, heme 

synthesis, DMT1, and FPN. IRP binding to mRNA either stabilizes it or sterically blocks 

its translation depending on the location of the IRE. When IREs are found in the 3′ UTR, 

such as in TfR, IRP binding protects the mRNA from degradation, allowing transcription 

and subsequent iron uptake. When IREs are found in the 5′ UTR, such as with ferritin 

mRNA, IRP binding blocks translation and thus decreases iron storage. Under iron replete 

conditions when IRP1 and IRP2 lose their IRE-binding activity, mRNAs with IREs in the 

3′ UTR are degraded while mRNAs with IREs in the 5′ UTR are stable and freely translated 

(Rouault, 2006).  

The IRPs are cytoplasmic proteins that belong to the aconitase family of 

isomerases. IRP1 is capable of switching from mRNA-binding activity to aconitase activity 

by binding a [4Fe-4S] cluster that prevents IRE binding. When cells are iron-depleted, the 

cluster is degraded and IRP1 gains mRNA-binding activity. In addition to being regulated 

by iron availability, IRP1 activity is influenced by Fe-S cluster biogenesis: IRE-binding 
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activity is increased when the Fe-S assembly machinery is impaired. This cluster can also 

be degraded by exposure to hydrogen peroxide or nitric oxide. Although IRP1 and IRP2 

are 57% identical, IRP2 does not bind an Fe-S cluster. Instead, it is synthesized and stable 

under low iron conditions, and degraded under high iron conditions. In addition to 

regulation by iron, IRP2 is also inhibited by ROS, RNS, and phosphorylation. IRP2 appears 

to be the main regulator of iron homeostasis as it can compensate for a loss of IRP1, while 

IRP1 cannot necessarily compensate for loss of IRP2 (Rouault, 2006; Pantopoulos, 2004). 

Regulation at the Post-Translational Level 

S. cerevisiae. Recent studies have started to unveil the post-translational 

mechanisms that govern the iron-dependent activity of the S. cerevisiae transcription 

factors Aft1 and Aft2. Genetic studies suggest that Aft1/2 does not directly sense iron, but 

rather responds indirectly to mitochondrial Fe-S cluster assembly (Rutherford et al, 2005). 

Interpretation of the mitochondrial Fe-S signal is dependent on a signaling pathway 

involving four cytosolic proteins: Grx3, Grx4, Fra1, and Fra2, which all have homologues 

in mammalian cells. Grx3 and Grx4 are multidomain CGFS monothiol glutaredoxins that 

form [2Fe-2S] cluster-bound homodimers with a role in intracellular iron trafficking 

(Muhlenhoff et al, 2010; H Li et al, 2009). Grx3 and Grx4 perform redundant functions 

since deletion of GRX3 or GRX4 singly has little or no phenotypic consequence, while 

grx3∆grx4∆ double mutants are severely growth impaired or inviable (Muhlenhoff et al, 

2010; Pujol-Carrion et al, 2006). Fra1 is an aminopeptidase P-like protein that is also 

implicated in regulation of vacuolar iron uptake (L Li et al, 2010). Fra2 is a member of the 

BolA protein family of unknown function, although recent work has linked both 

prokaryotic and eukaryotic BolA homologues to Fe-S cluster biogenesis (Li and Outten, 
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2012). Iron-dependent regulation of Aft1/2 occurs at the protein level since Aft1/2 

consistently localizes to the nucleus and binds its target promoters in the absence of the 

Fra1/Fra2/Grx3/Grx4 signaling pathway (Kumanovics et al, 2008). 

A variety of protein-protein interactions control signaling in this pathway. Grx3/4 

interacts with Aft1 and Aft2 via a conserved CDC motif in Aft1/2. In addition, Grx3/4 and 

Fra1 both bind to Fra2. Biochemical and spectroscopic studies revealed that Grx3/4 and 

Fra2 form [2Fe-2S]-bridged heterodimers, while mutagenesis studies confirmed that the 

amino acids necessary for cluster binding in vitro were also required for inhibition of 

Aft1/2 activity in vivo (H Li et al, 2011; H Li et al, 2009). Thus, Aft1/2 is proposed to 

sense the cellular iron status based on the ability of Grx3/4 and Fra2 to bind a [2Fe-2S] 

cluster (Li and Outten, 2012). Interestingly, Fe-S binding by Grx3/4 in vivo does not 

require the CIA machinery, indicating that a parallel pathway exists for insertion of the 

[2Fe-2S] cluster on Grx3/4. Under Fe replete conditions when Fra2-Grx3/4 binds an Fe-S 

cluster, the Fra1/Fra2/Grx3/4 signaling pathway is proposed to induce multimerization of 

Aft1/2. This conformational change in turn facilitates interaction with the exportin Msn5, 

leading to cytosolic localization of Aft1/2 and deactivation of the iron regulon. If the Fe-S 

signal is not received (iron-deplete conditions), the complex is unable to inhibit Aft1/2 

activity, and these transcription factors move to the nucleus and induce the iron regulon to 

increase cellular iron levels (Kumanovics et al, 2008; H Li et al, 2011). However, the iron 

regulon is not fully activated in iron-sufficient medium in fra1∆ or fra2∆ mutants or upon 

disruption of mitochondrial Fe-S assembly pathways, suggesting that a separate iron signal 

may partially inhibit Aft1/2 activity in these mutants. The specific molecular mechanisms 
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for inhibiting Aft1/2 activity via the Grx3/Grx4/Fra1/Fra2 signaling pathway or an 

alternate iron signal are still elusive. 

S. pombe. Similar to Saccharomyces cerevisiae, Schizosaccharomyces pombe 

use the monothiol glutaredoxin Grx4 to regulate the activity of iron-dependent transcription 

factors. Php4, the transcriptional repressor under iron deficiency, has the ability to sense 

iron availability. This ability is dependent on GSH: when GSH biogenesis is dysfunctional, 

Php4 is constitutively active. As described above, Fep1 can transcriptionally inactivate 

Php4. In the absence of Fep1, Php4 mRNA is stable and not affected by iron levels; 

however iron can inactivate Php4 protein. Php4 was also found to shuttle between the 

nucleus and the cytoplasm based on iron availability, similar to Aft1 in S. cerevisiae. Under 

sufficient iron, Php4 is exported to the cytoplasm, while under low iron, Php4 is found in 

the nucleus. This shutting was shown to be dependent on a nuclear export signal found in 

Php4 which is recognized in an iron-dependent fashion by the nuclear exporter Crm1. In 

addition, iron inactivation and nuclear export of Php4 requires functional Grx4. In cells 

lacking the gene for Grx4, Php4 consistently localizes to the nucleus, regardless of iron 

availability, thus Php4 is constitutively active (Mercier and Labbé, 2009; Mercier et al, 

2008). 

More recently, it was found that Fep1, the repressor under high iron conditions, is 

also regulated by Grx4. As previously described, Fep1 expression is controlled by Php4. 

Similar to the regulation of Php4 by Fep1, when Php4 is deleted, Fep1 can still be 

inactivated when cells are iron depleted. Fep1 mRNA levels are unaffected either by the 

Php4 deletion or by low iron conditions, suggesting this new regulation occurs at the 

protein level. Comparable to Php4 activity, when Grx4 is deleted, Fep1 is constitutively 
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active regardless of cellular iron availability. The mechanism of regulation by Grx4 seems 

to occur through protein-protein interactions. Grx4 can bind to Fep1 bound to a promoter 

under high iron conditions, but under low iron, this Grx4-Fep1 complex dissociates from 

the DNA. Grx4 contains two domains: a thioredoxin-like domain (TRX) and a 

glutaredoxin-like domain (GRX), both of which can associate with Fep1. Association of 

the TRX domain seems to be independent of iron, while the GRX domain interaction with 

Fep1 occurs in an iron-dependent manner. Although the Fep1-TRX interaction is stronger 

than the Fep1-GRX interaction, the latter seems to be required for iron-deplete inactivation 

of Fep1. Grx4 therefore plays a significant role in iron homeostasis in S. pombe, both under 

high and low iron conditions (Jbel et al, 2011). 

Hepcidin in Mammalian Cells. Systemic iron homeostasis in mammals 

requires communication between cells that acquire (enterocytes), recycle (macrophages), 

store (hepatocytes), and utilize iron (developing erythrocytes). The coordination of 

systemic iron acquisition and usage is mainly regulated post-translationally by the peptide 

hormone hepcidin. Hepcidin is a cysteine-rich, 25-amino acid peptide secreted by the liver 

and its only known target is the protein FPN. Hepcidin circulates in the plasma and binds 

to FPN found on the surface of intestinal duodenal cells and macrophages, thereby 

promoting FPN phosphorylation and subsequent degradation. Since FPN is the only known 

mammalian iron exporter, its degradation leads to decreased iron absorption from the 

intestine and disruption of iron recycling from macrophages (Kaplan et al, 2011). Hepcidin 

expression is regulated at the transcriptional level by several stimuli, including iron 

availability, inflammation, and hypoxia. Basal transcriptional expression of the hepcidin 

gene requires C/EBPα (CCAAT enhancer-binding protein α) binding to a CCAAT 
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sequence in the hepcidin promoter. Iron-dependent regulation of hepcidin expression 

occurs in response to two factors: iron stores and circulating iron. Hepatic iron stores 

activate hepcidin expression through bone morphogenic protein (BMP) signaling via an 

unknown mechanism. BMP binding to the BMP receptor activates a cascade that leads to 

hepcidin transcription. While several BMPs can induce hepcidin expression, BMP6 seems 

to be the most relevant as its expression is regulated by hepatic iron stores. Plasma iron 

levels can also regulate hepcidin expression through the major histocompatibility complex 

class 1-like protein HFE and TfR. HFE is a membrane protein that interacts with TfR1 and 

TfR2. When plasma iron levels are low, TfR1 is proposed to bind HFE. When iron-bound 

Tf increases, it displaces HFE from TfR1, allowing HFE to interact with TfR2, which 

activates a signaling pathway leading to hepcidin expression. Inflammatory response and 

ER stress can also induce hepcidin expression through the BMP and C/EBPα pathways 

(Wang and Pantpoulos, 2011; Gkouvatsos et al, 2012). 

PHD Regulation of HIF-2α in Mammalian Cells. As previously mentioned, 

HIF-2α controls iron absorption in enterocytes via transcriptional activation of iron uptake 

genes. The mechanism of activation is indirectly dependent on intracellular iron levels: 

HIF-2α protein levels are controlled by a prolyl hydroxylase (PHD) that requires O2 and 

Fe2+ for activity. Under normoxia conditions with sufficient iron, PHD is active and 

hydroxylates HIF-2α, resulting in ubiquination by the VHL (von Hippel-Lindau) ubiquitin 

ligase. Ubiquinated HIF-2α is subsequently targeted for degradation by the proteasome. In 

hypoxic conditions and/or under iron deficiency, PHD is inactive, thus HIF-2α is not 

hydroxylated and degraded, and instead forms a heterodimeric complex with HIF-1β that 

induces transcription of DcytB and DMT1 (Mastrogiannaki et al, 2009). Thus, HIF-2α 
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directly links iron absorption with both oxygen and iron metabolism. The mRNA for HIF-

2α also contains an IRE in the 5’ UTR that is a target for IRP1. HIF-2α is therefore post-

transcriptionally regulated in an iron-dependent fashion. The relationship between PHDs, 

HIF-2α, and IRP1 demonstrates feedback regulation between iron and oxygen metabolism 

that involves transcriptional, post-transcriptional, and post-translational control 

mechanisms (Sanchez et al, 2007).  

FBXL5 Regulation of IRP2 in Mammalian Cells. IRP2 plays a role in iron 

homeostasis by controlling the stability of mRNAs that encode proteins involved in iron 

trafficking and iron utilization. While it is clear that IRP2 is degraded under high iron 

conditions by a ubiquitin ligase, the identity of this enzyme was only recently uncovered. 

The SCF (SKP1-CUL1-F-box) ubiquitin ligases were found to be specific for IRP2 when 

customized by the F-box protein FBXL5. FBXL5 forms an SCF complex that physically 

interacts with IRP2 in an iron-dependent fashion. This regulation does not occur at the 

translational level, as FBXL5 mRNA levels were not affected by changes in iron. Rather, 

the FBXL5 protein is targeted for degradation based on iron availability. FBXL5 stability 

also depends on intracellular oxygen concentrations since exposure to oxygen leads to 

degradation. These observations are explained by the fact that FBXL5 contains a 

hemerythrin domain that binds iron and oxygen. Many iron-bound hemerythrin domains 

function as oxygen sensors and metal storage sites. The ability of the FBXL5 hemerythrin 

domain to bind iron seems to be indicator of stability. If an iron center cannot be bound 

either due to insufficient iron or hypoxic conditions, the protein is targeted for degradation. 

The stability of FBXL5 in turn regulates IRP2. Degradation of FBXL5 prevents formation 

of the SCF ubiquitin ligase, thus IRP2 is not targeted for degradation, and can bind IREs. 
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Under iron-replete conditions, the F-box domain of FBXL5 can bind its iron cofactor and 

form the SCF ligase complex, which then promotes degradation of IRP2 by ubiquination 

(Salahudeen et al, 2009; Vashisht et al, 2009). 

CONCLUSIONS 

While a great deal of progress has been made in characterizing the iron metallome 

of eukaryotes, there is still more left to uncover. Recent progress in spectroscopic 

techniques has aided in revealing the various forms of cellular iron. Future studies will 

focus on the nature of labile iron pools, including location, iron ligands, and cellular 

concentrations. How does iron vary among organisms, and under different growth 

conditions? The overall assembly of heme and Fe-S cluster cofactors is well-established, 

but there are some holes in our knowledge here as well. Even though some common iron 

chaperones have been identified, these need to be studied in more detail. Future work in 

this area will determine how iron is delivered for cofactor assembly, and how the assembled 

cofactors are trafficked to target proteins. One intriguing area of study is the identity of the 

product exported from the mitochondrial ISC machinery for the cytosolic CIA machinery. 

In addition, assembly of non-heme iron cofactors demands more investigation, as it seems 

this process is unique to the target protein. Several iron transporters have been identified 

and categorized to different organelles, particularly the mitochondria and vacuoles. 

However, just as chaperones to transfer iron for cofactor assembly are not well-

characterized, neither are chaperones for intracellular trafficking. In addition, while 

transport proteins have been identified for iron import, the mechanisms of import must be 

further characterized. Iron storage proteins are another focus for future studies, especially 

the mechanisms for releasing iron once cellular need increases. Are there specific enzymes 
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that target storage proteins for degradation or facilitate dissolution of ferritin biominerals? 

How is this regulated? 

One of the most important topics for future study is regulation of the iron 

metallome. From bacteria to yeast to humans, organisms have several complex 

mechanisms to maintain iron levels, from transcriptional to post-transcriptional to post-

translational control. There appears to be connections not only between these different 

regulatory levels, but also to oxygen metabolism. For example, hypoxia plays a regulatory 

role in controlling the expression and stability of several proteins: the hypoxia-inducible 

factors control iron uptake, and hypoxic conditions may induce expression of the hormone 

hepcidin. Several forms of regulation depend on indirect sensing of cellular iron levels, 

such as yeast Aft1 and Aft2. What is the mechanism for interpreting these cellular iron 

signals and how are Fe-S clusters involved? Furthermore, failures in regulation have been 

linked to many iron-related diseases, including hemochromatosis and anemia. A deeper 

understanding of the regulatory intricacies of iron metabolism will help in the treatment of 

these diseases. 

SCOPE OF THESIS 

This thesis outlines the roles of monothiol glutaredoxins and BolA-like proteins in 

iron homeostasis in E. coli, S. pombe, and S. cerevisiae. The work described here focuses 

mainly on in vitro characterization of these proteins and the complexes they form. In 

addition, we attempted to elucidate the in vivo functions of BolA and Erv1 proteins in 

relation to iron metabolism. 

Characterization of the protein-protein and protein-metal interactions of Grx4, 

BolA, and YrbA proteins in E. coli are described in Chapter 2. Fe-S cluster-bound 
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complexes formed by Grx4 alone and with the BolA protein have been detailed previously 

(Iwema et al, 2009; Yeung et al, 2011). These complexes were further investigated and 

compared to the Grx4-YrbA complex in this work. Significant differences found between 

these interactions may explain distinct roles of the proteins in the cell. We propose in E. 

coli that Grx4 acts as an iron and/or Fe-S cluster delivery protein. BolA and YrbA may 

have roles that are modified by interaction with Grx4. Alternatively, Grx4 function may be 

adjusted by interactions with BolA or YrbA. 

Characterization of the individual proteins and interactions between Grx4 and Php4 

in S. pombe is described in Chapter 3. Grx4 alone and with Php4 were found to bind [2Fe-

2S] clusters which are spectroscopically distinct. Additional mutagenesis and protein-

protein interaction studies demonstrated the roles of conserved cysteine residues and iron 

in complex formation. This data gives insight into the regulatory mechanism of Php4 

transcriptional function by Grx4. 

Functional genetic characterization of the BolA-like proteins in S. cerevisiae is 

detailed in Chapter 4. The BolA protein family does not have a specific function found 

across species. In this study, we endeavored to find an iron or oxygen-related phenotype 

for deletions in the three BolA-like proteins, Aim1, Fra2, and Yal044w. Only Fra2 was 

found to have a discernible role in iron regulation. In addition, the in vitro interactions of 

Aim1 and Yal044w with the mitochondrial glutaredoxin, Grx5, were investigated. Distinct 

interactions and phenotypes may reveal differing roles for these proteins in the cell. 

Work redefining the role of the protein Erv1 in iron homeostasis in S. cerevisiae is 

described in Chapter 5. A previous study suggested that Erv1 functions in linking Fe-S 

cluster biogenesis between the mitochondria and the cytosol (Lange et al, 2001). Here, we 
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show that the strain used in that work had a defect in glutathione biosynthesis which lead 

to the flawed conclusions. Further work with related Erv1 strains, as well as Mia40 strains, 

demonstrates the absence of a role for these proteins in iron regulation. 

Methods described in the above chapters may not include a large amount of 

information. Additional details for particular procedures are provided in Chapter 6. 

Overall, this work demonstrates the roles of Grxs and BolA proteins in iron homeostasis. 
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CHAPTER 2 

BOLA AND YRBA FORM DISTINCT FE-S CLUSTER COMPLEXES WITH GRX4 IN 

E. COLI 

 

ABSTRACT 

Iron is an essential element for cell viability, however excess iron is detrimental, 

thus cells must maintain the delicate balance of iron homeostasis. Two highly conserved 

protein families have emerged as important players in iron metabolism, the monothiol 

glutaredoxins (Grxs) and the BolA-like proteins. In the model eukaryote Saccharomyces 

cerevisiae, the monothiol glutaredoxins Grx3 and Grx4, and the BolA homologue Fra2 are 

involved in regulating iron homeostasis. The model prokaryote E. coli has close 

homologues for these proteins, the monothiol glutaredoxin Grx4, and two BolA-like 

proteins, BolA and YrbA. Co-expression of Grx4 with BolA or YrbA yields [2Fe-2S]-

bridged Grx4-BolA or Grx4-YrbA heterodimers, respectively. In vitro interaction studies 

indicate that BolA/YrbA binds the [2Fe-2S] Grx4 homodimer to form the [2Fe-2S] Grx4-

BolA heterodimer, altering the cluster stability and coordination environment. 

Additionally, mutagenesis studies indicate that Fe-S ligands provided by BolA and YrbA 

in Grx4 heterodimers differ. These results suggest that [2Fe-2S] Grx4 may act as an Fe-S 

scaffold or delivery protein, while addition of BolA/YrbA converts the complex for a 

different purpose, possibly to a cellular Fe sensor.
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INTRODUCTION 

The glutaredoxins (Grxs) are a highly conserved protein family, originally 

identified as redox proteins involved in thiol-disulfide exchange (Fernandes and Holmgren, 

2004). Grxs can be classified into two groups based on their active site sequence: dithiol 

Grxs have a CXXC motif (usually CPYC), while monothiol Grxs usually have a CGFS 

motif (Fernandes et al, 2005). Although both groups share a similar structure, the CGFS-

type Grxs do not function as oxidoreductases. Recent studies of both eukaryotic and 

prokaryotic CGFS-type Grxs have shown a potential role in iron homeostasis, iron-sulfur 

(Fe-S) cluster assembly, and signal transduction. Monothiol Grxs have been most 

investigated in S. cerevisiae, which contains three CGFS-type Grxs: Grx3, Grx4, and Grx5. 

Grx3/4 are cytoplasmic proteins that were previously characterized as being involved in 

iron homeostasis through regulation of the transcription factors Aft1 and Aft2 

(Kumánovics et al, 2008). Grx5, which is most similar to E. coli Grx4, is a mitochondrial 

protein that plays a role in the mitochondrial Fe-S cluster biosynthesis system (Rodríguez-

Manzaneque et al, 2002; Alves et al, 2004). E. coli Grx4 was originally characterized as a 

highly abundant protein with significant sequence identity to yeast Grx5 (Fernandes et al, 

2005). Grx4 was found to not function as an oxidoreductase, although it was redox-active 

and capable of being glutathionylated. Biochemical characterization of a variety of CGFS-

type Grxs show a conserved ability to exist either in a dimeric state with a [2Fe-2S] cluster 

bound, or in a monomeric apo form, suggesting conservation in the role of these proteins 

across prokaryotes and eukaryotes (Iwema et al, 2009). It has been shown that Grxs 

function in Fe-S cluster assembly as cluster scaffold or delivery proteins, in iron 

homeostasis as Fe donors, and in signal transduction. Indeed, it was shown that E. coli 
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Grx4 can transfer its [2Fe-2S] cluster to apo ferredoxin in vitro (Yeung et al, 2011). In 

addition, Grx4 may help to repair the Fe-S cluster on MiaB, a radical SAM enzyme 

involved in maturation of certain tRNAs that sacrifices its [4Fe-4S] cluster (Boutigny et al, 

2013). 

Monothiol Grxs were shown to physically interact with another widely conserved 

protein family, the BolA-like proteins, through yeast two-hybrid assays, proteome-wide 

FLAG- and TAP-tag affinity purification, and immunoprecipitation (Ito et al, 2000; 

Krogan et al, 2006; Huynen et al, 2005). Further, genomic analyses predict a functional 

interaction between monothiol Grxs and BolA proteins since they exhibit strong genome 

co-occurrence (Huynen et al, 2005). The BolA protein was originally identified in E. coli 

as a morphogene, with increased expression under stress conditions such as stationary 

phase (Aldea et al, 1989). In addition to possibly regulating synthesis of the cell wall 

proteins MreB, PBP5, and PBP6, it was shown that overexpression of BolA caused a round 

cellular morphology. Structural studies on BolA proteins from prokaryotes and eukaryotes 

indicate that they share an αββααβα topology with a helix-turn-helix motif and a class II 

KH fold commonly found in nucleic acid-binding proteins, except that the BolA proteins 

lack a conserved GXXG sequence (Kasai et al, 2004). SPR studies showed the BolA 

protein was able to bind to DNA containing the promoter regions from the mreB, dacA, 

and dacC genes, suggesting that BolA may act as a transcriptional regulator for cell wall 

synthesis. The 3D structure of BolA from E. coli (PDB code 2DHM) is similar to the 

peroxide reductase OsmC, also containing the class II KH fold (Huynen et al, 2005). Based 

on this structural similarity, BolA is proposed to also act as a reductase, although it would 

need a partner to donate reducing equivalents as there are no conserved cysteines. An 
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interaction with Grx would give BolA the necessary reducing equivalents to possibly target 

proteins that are part of the cell wall or its generation. E. coli contain an additional BolA-

like protein, YrbA, which currently has no reported function, but is currently thought to be 

involved in cellular acid stress resistance (Guinote et al, 2012). Similar to BolA, YrbA may 

have a function in cell wall biosynthesis: genes found around yrbA occur in or are 

functionally related to the outer membrane. Additionally, yrbA is transcribed with the 

essential gene murA, which is involved in metabolism of murein precursors. However 

unlike BolA, YrbA was not found to act as a morphogene. 

In S. cerevisiae, Grx3/4 and the BolA-like proteins Fra2 were shown to interact in 

an iron-dependent manner to regulate the transcription factors Aft1 and Aft2 (Kumánovics 

et al, 2008). The molecular interactions of Grx3/4 with the BolA-like protein Fra2 in S. 

cerevisiae was recently characterized. Fra2 forms a heterodimer with Grx3/4 bridged by a 

[2Fe-2S] cluster that is ligated by both cysteine and histidine residues (Li H et al, 2009). 

These conserved residues are required for iron-dependent inhibition of Aft1 activity, 

providing a link between [2Fe-2S] Grx3/4-Fra2 and their role in iron signaling (Li H et al, 

2011a). Despite being well-conserved from prokaryotes to eukaryotes, the specific role of 

the BolA protein family remains unknown. 

The in vivo interaction between E. coli Grx4 and BolA was established through an 

interaction network of protein complexes (Butland et al, 2005). SPA-tagged BolA 

copurified with Grx4, and SPA-tagged Grx4 copurified with BolA. However, YrbA was 

either not found or not included in this study. Genetic evidence suggests a role for both 

Grx4 and the BolA proteins in Fe-S cluster biosynthesis in E. coli. Specifically, these 

proteins may function in the Suf (Sulfur Utilization Factor) system, which operates under 
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iron starvation and oxidative stress conditions. Grx4 was previously crystallized as a [2Fe-

2S]-bridged homodimer, where two ligands are provided by the conserved active site 

cysteines and two ligands are provided by non-covalently bound glutathione (GSH) 

molecules through the cysteine moiety (Iwema et al, 2009). Recent studies have also shown 

that Grx4 and BolA can be reconstituted as a heterodimer with a [2Fe-2S] cluster bound 

(Yeung et al, 2011). Here we present biochemical and spectroscopic data characterizing 

both the [2Fe-2S] Grx4-BolA and the [2Fe-2S] Grx4-YrbA heterodimers. Mutagenesis 

data indicates that these two complexes bind to their cluster through different amino acids. 

Together, this evidence suggests that BolA and YrbA may be modifying Grx4 for a 

different function, and that the heterodimeric complexes formed could perform different 

roles in the cell. 

MATERIALS AND METHODS 

Plasmid Construction. The ORF of E. coli Grx4 was amplified from E. coli 

genomic DNA by PCR using the primers shown in Table 2.1 and cloned into the BspHI 

and BamHI sites of pRSFDuet-1 (Novagen) to generate pRSFDuet-1-Grx4. The ORF of E. 

coli BolA or YrbA (starting from the second Met) was amplified from E. coli genomic 

DNA by PCR using the primers shown in Table 2.1 and cloned into the NdeI and XhoI sites 

of pRSFDuet-1 to generate pRSFDuet-1-BolA, or the NdeI and KpnI sites to generate 

pRSFDuet-1-YrbA. Dual expression plasmids for Grx4-BolA or Grx4-YrbA were made as 

described above, where the ORF for BolA or YrbA was cloned into the pRSFDuet-1-Grx4 

plasmid to create pRSFDuet-1-Grx4/BolA or pRSFDuet-1-Grx4/YrbA, respectively. 

Grx4, BolA, and YrbA mutants were created by site-directed mutagenesis of pRSFDuet-

1-Grx4, pRSFDuet-1-BolA, pRSFDuet-1-YrbA, pRSFDuet-1-Grx4/BolA, or pRSFDuet- 
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Table 2.1. Primers used in this study. 

 

Primer Name Primer Sequence Enzyme 

Grx4 FOR GGAAGCAAGATCATGAGCACCAC BspHI 

Grx4 REV CCCGTTCGGATCCGTCAGTATTG BamHI 

BolA FOR GGAGGAGATATCATATGATGATACGTGAG NdeI 

BolA REV GCAACATACTCGAGAAGCGCCGAC XhoI 

YrbA FOR GATGATTGAAGATCATATGGAAAATAATG NdeI 

YrbA REV CATATCCGGTACCGGCGAATC KpnI 

BolA(H73A)  CTACCGTTGCTGCGCTGGCTCTG - 

BolA(C98H)  CCTCTCCTCCCCATCGTGGAGCAGG - 

BolA(H29A)  GAAAGCTATCGTGCCAATGTCCCAGC - 

BolA(H29C)  GCTGGGACATTGCAACGATAGCTTTC - 

BolA(S37A)  CGGCTCTGAAGCCCATTTTAAAGTTG - 

BolA(H38A)  CGGCTCTGAAAGCGCTTTTAAAGTTG - 

BolA(H38C)  CGGCTCTGAAAGCTGTTTTAAAGTTG - 

BolA(C98S)  CCTCTCCTCCCTCTCGTGGAGCAGG - 

YrbA(S26A)  CCGGCGATGGCGCCCACTTTCAGG - 

YrbA(H27A)  CGATGGCAGCGCCTTTCAGGTTATTGC - 

YrbA(H27C)  CGATGGCAGCTGCTTTCAGGTTATTGC - 

YrbA(H63A)  TAACCGCATTGCTGCTGTGTCGATCAAAG - 

YrbA(H63C)  TAACCGCATTTGTGCTGTGTCGATCAAAG - 

Grx4(C30S)  CTGCCGAGCTCCGGTTTCTCTGCCC - 

Grx4(C43S)  GGCGCTTGCCGCATCTGGCGAACG - 

Grx4(C84S)  GGTCGGCGGTTCTGATATCGTG - 
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1-Grx4/YrbA (QuikChange Mutagenesis kit, Stratagene) using primers listed in Table 2.1. 

These experiments were performed by Adrienne C. Dlouhy and Haoran Li (C. Outten 

group, unpublished). 

Protein Expression and Purification. Overexpression of Grx4 was performed in 

the E. coli BL21(DE3) strain in 1L of LB media at 30 °C shaking until the A600 = 0.6-0.8 

followed by induction with 1 mM isopropyl β-D-thiogalactosidase (IPTG). The cells were 

collected 18 hr after induction and resuspended in 50 mM Tris/MES, pH 8.0, 5 mM GSH, 

sonicated, and centrifuged to remove cell debris. The cell-free extract was loaded onto a Q 

Sepharose anion-exchange column (GE Helathcare) equilibrated with 50 mM Tris/MES, 

pH 8.0, 5 mM GSH. The protein was eluted with a 0-1 M NaCl gradient using 50 mM 

Tris/MES, pH 8.0, 5 mM GSH, 1 M NaCl. Fractions containing Grx4 were pooled and 

(NH4)2SO4 was added to a final concentration of 1 M. The sample was loaded onto a Phenyl 

Sepharose column (GE Healthcare) equilibrated with 50 mM Tris/MES, pH 8.0, 5 mM 

GSH, 1 M (NH4)2SO4, 100 mM NaCl. The protein was eluted with a 1-0M (NH4)2SO4 

gradient, and fractions containing Grx4 were concentrated loaded onto a HiLoad Superdex 

75 gel filtration column (GE Healthcare) equilibrated with 50 mM Tris/MES, pH 8.0, 5 

mM GSH, 150 mM NaCl. The purest fractions of [2Fe-2S] Grx4 homodimer and apo-Grx4 

monomer, as judged by SDS-PAGE and UV-visible spectroscopy, were collected 

separately and concentrated with the addition of 5% (v/v) glycerol and stored at -80 °C. 

All purifications were carried out under anaerobic conditions (O2 < 5 ppm) in a glovebox 

(Coy Laboratory Products). 

Coexpression and copurification of Grx4 with BolA or YrbA was performed with 

the pRSFDuet-1-Grx4/BolA or pRSFDuet-1-Grx4/YrbA expression plasmids transformed 
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into E. coli BL21(DE3), using the procedure described above for Grx4, except no GSH 

was added to the purification buffers. Some purifications utilized 50 mM Tris-HCl (pH8.0) 

instead of 50 mM Tris/MES (pH8.0). Purification of apo-BolA and apo-YrbA was 

performed as described previously for yeast apo-Fra2 (Li H et al, 2009). All Grx4, BolA, 

and YrbA mutants (either alone or coexpressed) were purified using the same procedure as 

their WT. These experiments were performed by Adrienne C. Dlouhy and Haoran Li (C. 

Outten group, unpublished). 

Biochemical Analyses. Protein concentrations were determined by the 

Bradford Assay (Bio-Rad) using bovine serum albumin as the standard. Iron concentrations 

were determined using the colorimetric ferrozine assay (Riemer et al, 2004). Acid-labile 

sulfur concentrations were determined using published methods (Beinert, 1983; Broderick 

et al, 2000). For GSH measurements, the purified Fe-S protein complexes were denatured 

and precipitated with 1% 5-sulfosalicylic acid, and GSH in the supernatant was measured 

by the 5, 5’-dithiobis(2-nitrobenzoic acid) -GSSG reductase cycling assay as described 

previously (Outten and Culotta, 2004). GRX oxidoreductase activity was measured using 

a fresh mixture of 1 mM GSH, 0.4 mM NADPH, 2mM EDTA, 0.1 mg/mL BSA, and 6 

μg/mL yeast GSSG reductase in 100 mM Tris-HCl, pH 8.0. HED was added to a final 

concentration of 0.7 mM to 260 μL of this mixture. After 2 minutes, glutaredoxin was 

added, or buffer to a reference, and the decrease in A340 was monitored for 2 min at 15 sec 

intervals, with human Grx2 as a control (Holmgren and Aslund, 1995). 

Analytical and Spectroscopic Methods. Analytical gel filtration analyses were 

performed on a Superdex 75 10/300 GL column (GE Healthcare) equilibrated with 50 mM 

Tris/MES, pH 8.0, 150 mM NaCl, 5 mM GSH and calibrated with the low molecular 
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weight gel filtration kit (GE Healthcare) as described previously for the yeast Grx3-Fra2 

complexes (Li H et al, 2009). Mass spectrometry analysis of purified proteins was 

determined using a Bruker UltraFlex MALDI-TOF/TOF mass spectrometer. A saturated 

solution of sinapinic acid in 50% acetonitrile and 0.1% trifluoroacetic acid was used as the 

matrix. These experiments were performed by Adrienne C. Dlouhy and Haoran Li (C. 

Outten group, unpublished). 

UV-visible absorption spectra were recorded using a Beckman DU-800 

spectrophotometer. CD spectra were recorded under anaerobic conditions on identical 

samples using a Jasco J-715 or J-800 spectropolarimeter (Jasco, Easton, MD).  X-band 

EPR spectra were recorded using either a ESP-300D spectrometer (~9.6 GHz, Bruker, 

Billerica, MA), or a Bruker EMX plus spectrometer (~9.4 GHz, Bruker, Billerica, MA) 

equipped with an ESR900 continuous flow cryostat (Oxford Instruments, Concord, MA). 

Spectra were quantified under nonsaturating conditions by double integration against a 1.0 

mM CuEDTA standard. EPR conditions: modulation frequency, 100 kHz, modulation 

amplitude, 1.0 mT, microwave power, 10 mW, and temperature 10-20 K. 

Resonance Raman spectra were recorded as previously described (Cosper et al, 

2004), using an Instruments SA Ramanor U1000 spectrometer coupled with a Coherent 

Sabre argon ion laser, with 20 μl frozen droplets of ~1.5-2.5 mM sample mounted on the 

cold finger of an Air Products Displex Model CSA-202E closed cycle refrigerator. These 

experiments were performed by Adrienne C. Dlouhy and Haoran Li (C. Outten group, 

unpublished), and M. Johnson group (UGA, unpublished). 

CD-Monitored Titration of [2Fe-2S] Cluster-bound Grx4 with BolA or YrbA. The 

titration of [2Fe-2S]2+ cluster-bound Grx4 with apo-BolA or apo-YrbA was monitored 
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under anaerobic conditions at room temperature using UV-visible CD spectroscopy. 

Reactions were carried out in 50 mM Tris/MES, pH 8.0, 5 mM GSH, with the [2Fe-2S] 

cluster concentration kept constant at 100 μM and BolA/YrbA:[2Fe-2S] ratios varying 

from 0 to 4. Samples were equilibrated for 5 min at room temperature after addition of 

BolA or YrbA prior to recording CD spectra, followed by analytical gel filtration analyses 

on a Superdex 75 10/300 GL column (GE Healthcare) as described above to determine the 

oligomerization state between Grx4 and BolA or YrbA. These experiments were performed 

by Adrienne C. Dlouhy and Haoran Li (C. Outten group, unpublished). 

Isothermal Titration Calorimetry. Binding characteristics of the apo Grx4-BolA 

and Grx4-YrbA complexes were determined by ITC, using a VP-ITC titration 

microcalorimeter (MicroCal, Inc.). Experiments were performed at 26 °C by titrating a 

1.24 mM solution of either BolA or YrbA in the syringe into a 62.1 µM solution of apo-

Grx4 in the adiabatic cell, with all proteins prepared in 50 mM Tris-HCl, pH 8.0. For the 

BolA titration into Grx4, the initial four injections were at 2 µL, followed by four injections 

at 4 µL, four injections at 6 µL, and finally 25 injections at 10 µL. For the YrbA titration 

into Grx4, the initial injection was at 1 µL, followed by 59 additional injections at 3 µL. 

Data analysis was performed using the Origin Software (MicroCal) to calculate the binding 

stoichiometry, dissociation constant, and change in enthalpy and entropy of the titration. 

CD-Monitored pH Titration of [2Fe-2S] Complexes. pH-dependent [2Fe-

2S]2+ cluster ligation changes were monitored by CD. Holo complexes of Grx4, Grx4-

YrbA and Grx4-BolA were anaerobically equilibrated in 50 mM MES buffer at a pH range 

of 5.5-6.7, or 50 mM Tris buffer at a pH range of 6.5-9.0 for 15 min at room temperature 
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before recording CD spectra. The [2Fe-2S] cluster concentration was kept constant at 40 

μM.  

Electrophoretic Mobility Shift Assay. The DNA-binding ability of BolA and YrbA 

protein complexes was determined using electrophoretic mobility shift assays. The DNA 

probe consisted of a 360-bp region upstream of the mreB gene containing three putative 

promoter regions. This region was amplified from E. coli genomic DNA using the primers 

5’-CAGCCACTTGATACTAACGTG-3’ and 5’-CAACATACTAAGGGATAATCCTG-

3’ labeled with IRDye700 and the 5’-ends (Integrated DNA Technologies). Binding 

reactions were prepared in the dark, and consisted of hybridization buffer (20 mM Tris-

HCl, pH 8, 100 mM KCl, 1 mM DTT, 5% glycerol, and 4 ng/μl sonicated salmon sperm 

DNA), 1 nM IRDye-mreB oligonucleotides, and purified recombinant protein. Proteins 

used were apo-BolA, apo-YrbA, [2Fe-2S] Grx4-BolA, and [2Fe-2S] Grx4-YrbA, and all 

were prepared in 50 mM Tris/MES, pH 8, 150 mM NaCl buffer. Once the protein was 

added, reactions were incubated for 20 minutes in the dark. A 5% polyacrylamide non-

denaturing gel containing Tris-borate-EDTA (TBE) was pre-electrophoresed in 0.5x TBE 

buffer until the current was stable. The binding reactions were then applied to the 

equilibrated gel and electrophoresed using TBE buffer for 1.5 hours at 80 V. Gels were 

imaged and quantified using an Odyssey Infrared Imaging System (LI-COR). 

RESULTS AND DISCUSSION 

Grx4 and BolA/YrbA Copurify as Heterodimeric Complexes that Coordinate a 

[2Fe-2S] Cluster via Different Interaction Modes. Previous work in yeast and humans 

demonstrates the connection between monothiol Grxs, BolA proteins, and cellular iron 

sensing (Kumanovics et al, 2008; Li H et al, 2009; Li H et al, 2011a; Li H et al, 2012a). 
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Additionally, it was shown that Grx4 and BolA in E. coli can be reconstituted to a [2Fe-

2S] cluster-binding heterodimer (Yueng et al, 2011). We assessed whether Grx4 also 

formed an Fe-S complex with YrbA, and if Grx4-YrbA and Grx4-BolA could be expressed 

recombinantly and purified with an Fe-S cluster. Coexpression and purification of either 

BolA or YrbA with Grx4 yielded reddish-brown proteins with UV-visible absorption 

features ~400-410 nm indicating the binding of a [2Fe-2S] cluster (Figure 2.1). Expression 

and purification of Grx4 for comparison also yielded a [2Fe-2S] bound complex with 

spectral characteristics identical to what was previously reported (Figure 2.1, Yueng et al, 

2011). Iron, acid-labile sulfur, and GSH analyses of the Grx4 complex confirms binding of 

two GSH molecules per cluster, with the complex containing ~0.75 [2Fe-2S] cluster per 

homodimer (Table 2.2). Analyses of the Grx4-YrbA and Grx4-BolA complexes show only 

one GSH molecule binding per cluster, with the complexes containing ~0.5 and ~0.75 [2Fe-

2S] cluster per heterodimer, respectively. The UV-visible absorption spectra of Grx4-YrbA 

and Grx4-BolA are fairly similar, with a shoulder ~320 nm and a broad peak ~410 nm. 

However, comparison of the CD spectra shows distinct spectral features, particularly peak 

shifts in the 400-500 nm range, suggesting differences in the cluster binding environments 

(Figure 2.1). Based on observations during purification and the analytical data above, it 

appears that the Fe-S clusters the Grx4 homodimer and the Grx4-BolA heterodimer are 

relatively stable, while the Fe-S cluster on Grx4-YrbA is quite unstable despite exclusion 

of oxygen, suggesting that YrbA somehow destabilizes the Fe-S cluster once bound to 

Grx4. 

As previously mentioned, dithiol Grxs can reduce mixed disulfides using the 

conserved cysteines in their active site. Monothiol Grxs do not have this ability without a  
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Figure 2.1. (A) Comparison of UV-visible absorption and CD spectra of [2Fe-2S] Grx4 

homodimer with [2Fe-2S] Grx4-BolA and Grx4-YrbA heterodimers. (B) SDS-PAGE of 

purified complexes. 
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Table 2.2. Fe, S2-, and GSH measurements in purified Fe-S complexes.1 

 

sample Fe S
2-

 GSH Fe:S:GSH 

[2Fe-2S] Grx4 1.5 ± 0.3 1.5 ± 0.2 1.1 ± 0.2 1:1:0.7 

[2Fe-2S] Grx4-YrbA 1.0 ± 0.1 0.9 ± 0.1 0.4 ± 0.1 1:0.9:0.4 

[2Fe-2S] Grx4-BolA 1.6 ± 0.3 1.7 ± 0.5 0.5 ± 0.2 1:1.1:0.4 

[2Fe-2S] hGrx2 1.0 ± 0.3 1.0 ± 0.5 1.1 ± 0.7 1:1:1.1 
1Values are reported per complex. Data are the average of three independent samples. 
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dedicated partner providing reducing equivalents. Indeed, initial characterization of the apo 

form of E. coli Grx4 showed no significant GRX activity. To determine if binding of an 

Fe-S cluster and/or a BolA protein could amplify this activity, the GRX-HED assay was 

performed on Grx4, Grx4-YrbA, and Grx4-BolA complexes with and without Fe-S cluster, 

using [2Fe-2S]-bound human Grx2 as a positive control. There was no significant GRX 

activity for any of the complexes compared to hGrx2, indicating these complexes do not 

likely function in disulfide reduction in the cell (Figure 2.2). 

The stabilities of the reduced [2Fe-2S]+ clusters of Grx4, Grx4-YrbA, and Grx4-

BolA were investigated by EPR spectroscopy (Figure 2.3). The [2Fe-2S] cluster in Grx4 

was not stable during reduction with excess sodium dithionite for any extended period of 

time, indicated by the absence of an EPR signal. The clusters on Grx4-BolA and Grx4-

YrbA were reduced anaerobically with stoichiometric dithionite and frozen rapidly. 

Reduction of [2Fe-2S] Grx4/YrbA gives a rhombic S = ½ EPR signal, g1 = 2.01, g2 = 1.92, 

g3 = 1.87 (gav ~1.93, Figure 2.3A), while reduction of [2Fe-2S] Grx4-BolA gives a more 

narrow rhombic S = ½ EPR signal, g1 = 2.02, g2 = 1.93, and g3 = 1.91 (gav ~1.95, Figure 

2.3B). Thus, the [2Fe-2S] cluster in Grx4 is reductively labile in dithionite, whereas the 

[2Fe-2S] clusters in Grx4/BolA and Grx4/YrbA are reductively stable. Some indications 

of cluster ligation are given by gav values and g value anisotropy. A decrease in gav values 

is suggestive of cysteine to histidine ligand replacement. S. cerevisiae Grx3, with all-

cysteine ligation has gav ~1.97 (Li H et al, 2011a), Grx4/BolA is similar at ~1.95, while 

Grx4/YrbA is reduced to ~1.93. For comparison, Rieske proteins have gav ~1.90 with two 

cysteine and two histidine ligands. Therefore, it is likely that Grx4/BolA is all-cysteine 

ligation, while Grx4/YrbA likely has three cysteine and one histidine ligand. 
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Figure 2.2. GRX-HED assay for E. coli Grx4 apo and Fe-S complexes with and without 

the BolA proteins. Human Grx2 is shown as a positive control. 
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Figure 2.3. Comparison of EPR spectra of (A) [2Fe-2S] Grx4-YrbA and (B) [2Fe-2S] 

Grx4-BolA. [2Fe-2S] Grx4-YrbA was analyzed by Adrienne C. Dlouhy, [2Fe-2S] Grx4-

BolA was analyzed by M. K. Johnson lab. 
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Resonance Raman and pH-Dependent CD Spectroscopies Suggest Partial His 

Ligation in Grx4-YrbA. Resonance Raman spectroscopy using 457, 488, and 514 nm 

excitation was used to confirm the presence and ligation properties of the [2Fe-2S] clusters 

in Grx4, Grx4-BolA, and Grx4-YrbA (Figure 2.4). The spectra obtained for [2Fe-2S] Grx4 

are very similar to those reported for the monothiol Grx3 from S. cerevisiae (Li et al, 2009). 

Additionally, the spectra obtained for [2Fe-2S] Grx4-BolA are comparable to that of Grx4. 

The Fe-S stretching frequencies for both of these clusters are similar to other characterized 

[2Fe-2S] clusters with complete cysteinyl ligation (Fu et al, 1992; Li H et al, 2009). In 

contrast, the resonance Raman spectra of [2Fe-2S] Grx4-YrbA are more characteristic of 

[2Fe-2S] clusters with one His ligand in place of a Cys ligand based on published data for 

the characterized Grx3-Fra2 as well as Rieske-type proteins (Kounosu et al, 2004; Li H et 

al, 2009). Partial His ligation is seen by the presence of a band at 264 cm-1, attributed to 

Fe-N(His) stretching. 

A histidine residue ligating an Fe-S cluster has an available nitrogen that can change 

protonation state by changes in solvent pH. Since this change is occurring in the cluster 

coordination environment, it can be monitored spectroscopically. In contrast, a cysteine 

cluster ligand does not change protonation with changes around biological pH. As a final 

confirmation and to determine the pKa of the His cluster ligand in the [2Fe-2S] Grx4-YrbA 

complex, a pH titration was performed and monitored by changes in the CD spectrum, with 

[2Fe-2S] Grx4 and [2Fe-2S] Grx4-BolA as controls. The [2Fe-2S] clusters were monitored 

in a pH range of 5.5-9.0. The [2Fe-2S] Grx4-YrbA complex shows a shift in the minimum 

at 349 nm to 357 nm and a disappearance in the shoulder at 403 nm with increasing pH 

(Figure 2.5). In addition, the maximum at 461 nm decreases concurrently with the 
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Figure 2.4. Comparison of Resonance Raman spectra of [2Fe-2S] Grx4 (left), [2Fe-2S] 

Grx4-BolA (middle), and [2Fe-2S] Grx4-YrbA (right). 
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Figure 2.5. CD-monitored pH titration of [2Fe-2S] Grx4-YrbA and fitting of the titration 

curve (inset). 
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appearance of another maximum at 437 nm. The changes occur most drastically between 

the samples at pH 6.5 and 7.0, suggesting a pKa ~ 6.75. Fitting the titration curve to a one 

H+ dissociation gives a pKa of 6.85 for the His residue. Titrations with the [2Fe-2S] Grx4 

and [2Fe-2S] Grx4-BolA complexes do not give any changes in the CD spectra other than 

decreased intensity, likely due to cluster instability at higher pH (Figure 2.6). 

Apo-YrbA binds to [2Fe-2S] Grx4 to form the [2Fe-2S] Grx4-YrbA heterodimer 

complex. To determine whether [2Fe-2S] Grx4 homodimer or [2Fe-2S] Grx4-YrbA 

heterodimer was the thermodynamically preferred form, CD spectrum changes were 

monitored of holo-Grx4 upon titration with YrbA, since the CD spectra of the homodimer 

and heterodimer complexes differ significantly. The addition of increasing equivalents of 

YrbA resulted in in the CD spectrum conversion from [2Fe-2S] Grx4 homodimer to [2Fe-

2S] Grx4-YrbA heterodimer, indicating this complex is thermodynamically preferred 

(Figure 2.7), similar to the [2Fe-2S] Grx4-BolA complex (Yueng et al, 2011). Formation 

of [2Fe-2S] Grx4-BolA requires two equivalents of BolA to saturate the Grx4 homodimer, 

suggesting BolA binding to [2Fe-2S] Grx4 results in formation of both the apo and holo 

forms of the heterodimer (Figure 2.8). In contrast, addition of YrbA to [2Fe-2S] Grx4 

causes immediate CD quenching of the [2Fe-2S] Grx4 homodimer, consistent with features 

of the as-purified Grx4-YrbA complex. 

[2Fe-2S] Grx4-BolA and [2Fe-2S] Grx4-YrbA are destabilized by GSH in the 

presence of oxygen. All of the [2Fe-2S] Grx4 homodimer and heterodimer complexes 

bind GSH non-covalently as an Fe-S cluster ligand. It was found during purification that 

the cluster on Grx4 homodimer is stabilized by the addition of GSH to the buffer when in 

the presence of oxygen, since the cluster is oxidatively labile. However, the Grx4-BolA  
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Figure 2.6. CD-monitored pH titrations of [2Fe-2S] Grx4 (top) and [2Fe-2S] Grx4-BolA 

(bottom). 
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Figure 2.7. Titration studies of [2Fe-2S] Grx4 with apo-YrbA monitored by UV-visible 

CD spectroscopy. Figure legend ratios are YrbA:[2Fe-2S] Grx4. Top inset: Titration fit to 

change in Δε based on the ratio of YrbA to [2Fe-2S]. Bottom inset: Model of interaction 

between [2Fe-2S] Grx4 and YrbA to form Grx4-YrbA heterodimers. 
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Figure 2.8. Titration studies of [2Fe-2S] Grx4 with apo-BolA monitored by UV-visible 

CD spectroscopy. Figure legend ratios are BolA:[2Fe-2S] Grx4. Top inset: Titration fit to 

change in Δε based on the ratio of BolA to [2Fe-2S]. Bottom inset: Model of interaction 

between [2Fe-2S] Grx4 and BolA to form Grx4-BolA heterodimers. 
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and Grx4-YrbA clusters would degrade if exposed to oxygen while in buffer containing 

GSH. This degradation was quantified by monitoring change in A410 over two hours in the 

presence and absence of both GSH and oxygen (Figure 2.9). All of the Fe-S clusters were 

relatively stable when monitored anaerobically (less than 6% degraded). The Fe-S cluster 

on Grx4-BolA degraded by ~80% when exposed to oxygen in the presence of GSH, while 

only ~10% of the cluster degraded in the absence of GSH. The Fe-S cluster on Grx4-YrbA 

was not as affected by the presence of GSH with ~40% degradation, although this was still 

more than the ~10% degradation without GSH. As expected, the Fe-S cluster on Grx4 

homodimer did not degrade significantly when exposed to oxygen with GSH present, and 

there was only ~10% of the cluster degraded without GSH over the two hour time period. 

Overall, this data suggests that GSH acts as protection against oxidative degradation for 

[2Fe-2S] Grx4. However, [2Fe-2S] Grx4-BolA and [2Fe-2S] Grx4-YrbA are susceptible 

to GSH-mediated degradation in oxygen. It seems unlikely that this is due to an increase 

in GSH-related reactive oxygen species, as Grx4 is stable under the same conditions. More 

likely, the GSH may be pulling out the clusters, since it has been shown that four GSH 

molecules can coordinate a [2Fe-2S] cluster, possibly for cluster transfer (Qi et al, 2012). 

Complex formation between Grx4 and BolA/YrbA is independent of Fe-S cluster 

binding. In order to determine the stoichiometry between Grx4 and YrbA/BolA, the 

molecular weights of the Grx4-YrbA and Grx4-BolA apo and holo complexes were 

calculated by size-exclusion chromatography, using apo and holo Grx4, YrbA, and BolA 

as controls (Figure 2.10). Comparison of calculated masses indicates that both apo and holo 

Grx4 forms a heterodimeric complex with either YrbA or BolA (Table 2.3). This implies 

that complex formation between Grx4 and YrbA/BolA occurs regardless of the presence  
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Figure 2.9. GSH-mediated destabilization of [2Fe-2S] clusters on Grx4-BolA (top), Grx4-

YrbA (middle), and Grx4 (bottom). Protein was monitored aerobically in the presence 

(solid red line) and absence (broken red line) of GSH, as well as anaerobically in the 

presence (solid blue line) and absence (broken blue line) of GSH.  
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Figure 2.10. Superdex75 analytical gel filtration data for apo- and holo-complexes. (Top) 

BolA and Grx4-BolA complexes compared to Grx4 complexes. (Bottom) YrbA and Grx4-

YrbA complexes compared to Grx4 complexes.  
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Table 2.3. Molecular weight determination of proteins and complexes. 

 

Sample Complex 
Theoretical 

(Da) 
Gel filtration 

(kD) 
MALDI 

(Da) 

apo Grx4 Monomer 12879 20.9 ± 0.32 12705 ± 49 

[2Fe-2S] Grx4 Dimer 26548 41.8 ± 0.11 ND 

YrbA Monomer 9452 16.7 ± 0.15 9462 ± 11 

BolA Monomer 11994 20.6 ± 0.74 12003 ± 16 

BolA Dimer 23987 32.8 ± 0.76 23891 ± 145 

apo Grx4-YrbA Dimer 22331 24.4 ± 0.23 22171 ± 171 

[2Fe-2S] Grx4-YrbA Dimer 22814 30.1 ± 0.17 ND 

apo Grx4-BolA Dimer 24872 24.0 ± 0.50 24719 ± 48 

[2Fe-2S] Grx4-BolA Dimer 25355 34.5 ± 0.59 ND 

ND: not determined 
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of Fe-S cluster. The theoretical masses of the apo proteins were confirmed by MALDI 

within error. Grx4 monomer, as well as apo complexes of Grx4-YrbA and Grx4-BolA, are 

approximately 150 Da less than expected. This is likely due the cleavage of the N-terminal 

methionine on Grx4. 

To elucidate how BolA interacts with [2Fe-2S] Grx4 homodimer, size-exclusion 

chromatography was performed after the CD-monitored titrations to reveal formation of 

different complexes. As shown in Figure 2.10A, as well as SDS-PAGE and UV-visible 

absorption spectra of eluted proteins (data not shown), it can be concluded that BolA 

titration promotes the following events: (1) decrease of [2Fe-2S] Grx4 homodimer, (2) 

formation of [2Fe-2S] Grx4-BolA heterodimer, (3) formation of apo Grx4-BolA 

heterodimer, and (4) disappearance of BolA monomer. These events verify that the 

interaction between Grx4 and BolA is not Fe-S dependent. 

It was found that YrbA can interact with [2Fe-2S] Grx4 homodimer in a manner 

similar to BolA, independent of Fe-S cluster binding (Figure 2.10B). However, given the 

degradation of [2Fe-2S] cluster after addition of YrbA, most of the Grx4-YrbA heterodimer 

was isolated in the apo form, instead of equal amounts of apo and holo found for the Grx4-

BolA interaction. This confirms that YrbA is able to destabilize the [2Fe-2S] cluster on 

Grx4 by an unknown mechanism. Taken together, it can be concluded that BolA and YrbA 

both interact with Grx4, however their mechanisms of interaction are different, suggesting 

they likely function is separate pathways in vivo. Additionally, this differs from the [2Fe-

2S] Grx3-Fra2 complex in yeast, where the interaction was found to be somewhat 

dependent on the presence of a cluster. 
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To further verify and quantify the thermodynamic characteristics of the interaction 

of BolA/YrbA with apo-Grx4, isothermal titration calorimetry was performed, with yeast 

apo-Grx3 and Fra2 as a control. BolA and YrbA both displayed a strong exothermic 

interaction when binding to apo-Grx4 (Figure 2.11). Data were fit to a one binding site 

model, consistent with the 1:1 interactions found by gel filtration above. Corresponding KD 

values were comparable, with BolA binding to apo-Grx4 at 4.57 ± 0.90 μM and YrbA at 

3.42 ± 0.11 μM (Table 2.4). These affinities are tighter than what was observed for the 

yeast Grx3-Fra2 interaction at a KD of 20.8 ± 6.62 μM. This interaction also demonstrated 

a decrease in the amount of heat released during the interaction, indicating a weaker 

binding event. Together, this data confirms the Grx4-BolA/YrbA interaction is 

independent of Fe-S cluster binding, and that these complexes behave differently from the 

homologues found in yeast, possibly indicating a distinct function in E. coli. 

Identifying potential Fe-S cluster ligands in BolA and YrbA. To identify 

residues in BolA and YrbA that could act as Fe-S cluster ligands in the Grx4-BolA and 

Grx4-YrbA complexes, the amino acid sequence of these two proteins was aligned with 

other BolA family members to find conserved residues (Figure 2.12). Structural 

information for BolA and YrbA, as well as eukaryotic BolA homologues, shows a 

conserved topology for the protein family. The above spectroscopic data suggest the Grx4-

BolA complex contains only Cys ligation to the Fe-S cluster, while the Grx4-YrbA 

complex has mixed Cys and His ligation.  BolA only contains one cysteine (Cys98), while 

YrbA contains none. BolA and YrbA both contain the conserved histidine known to be a 

cluster ligand in the Grx3-Fra2 complex (His73 and His63 respectively), as well as a 

______ 
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Figure 2.11. Raw isothermal titration calorimetry data (top panels) and binding isotherm 

data (bottom panels) for (A) titration of BolA into apo-Grx4, (B) titration of YrbA into 

apo-Grx4, and (C) titration of S. cerevisiae Fra2 into apo-Grx3.  
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Table 2.4. Thermodynamic binding parameters of BolA/YrbA to Grx4 and Fra2 to Grx3. 

 

 N (sites) K
d
 (µM) 

ΔH 

(kcal mol
-1

) 

ΔS 

(cal mol
-1

 K
-1

) 

Grx4 + BolA 0.97 ± 0.03 4.57 ± 0.90 -3.145 ± 0.099 14.1 

Grx4 + YrbA 0.70 ± 0.01 3.42 ± 0.11 -5.866 ± 0.123 5.40 

Grx3 + Fra2 0.40 ± 0.19 20.8 ± 6.62 -10.11 ± 5.40 -12.4 
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Figure 2.12 (Top) Sequence alignment of E. coli YrbA and BolA with other BolA1 and 

BolA2 proteins. Black selections indicate identical residues, gray selections indicate 

similar residues. (Bottom) NMR solution structure models of E. coli BolA and YrbA (PDB 

codes 2DHM and 1NY8, respectively)  
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histidine conserved only in BolA1 proteins (His38 and His27, respectively) (Li H et al, 

2011a). Consequently, these residues were identified as good candidates for Fe-S binding.  

BolA and YrbA also contain a somewhat conserved histidine that was investigated (His29 

and His20, respectively). In addition, since serine residues have been shown to act as 

cluster ligands, although rarely, a somewhat conserved serine was also investigated (BolA 

Ser37 and YrbA Ser26). Both proteins also contain other histidines and serines that are not 

as well-conserved, or not conserved at all, therefore these residues were not investigated. 

Iron-sulfur cluster ligands provided by BolA and YrbA differ in the heterodimeric 

complexes with Grx4. As demonstrated above, the Grx4-BolA complex appears to bind its 

cluster using only cysteine ligation. Therefore, the only cysteine residue in BolA was 

investigated through C98S and C98H mutations, in addition to the histidine mutants H29A, 

H38A, and H73A, the serine mutant S37A, and a H73A/C98S double mutant. All of these 

BolA mutants copurified with Grx4 and bound a [2Fe-2S] cluster (Figure 2.13). Initial 

spectroscopic characterization showed nearly identical UV-visible absorption spectra for 

these mutants. The CD spectra vary slightly compared to the WT heterodimer, although 

this may be attributed to the mutations being near the cluster coordination site. However, 

the overall character of the spectra are very similar, suggesting these mutants do not 

directly affect Fe-S cluster binding. It is possible that either His73 or Cys98 could act as a 

cluster ligand, and mutating one residue may cause ligand switching to the other residue. 

However, simultaneous mutation of both these residues (H73A/C98S) still did not cause 

any significant changes in the CD spectra, making it unlikely that either residue acts as a 

cluster ligand. 
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Figure 2.13. Comparison of UV-visible absorption (top panels) and CD spectra (bottom 

panels) of [2Fe-2S] Grx4-BolA mutants. (A) BolA H29A, S37A, and H38A mutants 

compared to WT. (B) BolA C98S and C98H mutants compared to WT. (C) BolA H73A 

single and C98S/H73A double mutant compared to WT. The proteins shown in Figure 

2.13A were purified in Tris/MES buffer, while the proteins shown in Figures 2.13B and C 

were purified in Tris-HCl buffer, which causes some minor changes in the CD features. 
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Intriguingly, the amount of Fe-S cluster-loading in these mutants were all similar 

to WT levels with the exception of the H29A mutant, which was generally ~25% loaded 

(Table 2.5). This mutation may destabilize BolA binding to the Fe-S cluster, although it is 

unlikely that His29 acts as a cluster ligand. Resonance Raman spectra for the H73A and 

C98S mutants copurified with Grx4 verified these conclusions (Figure 2.14). If His73 acted 

as a cluster ligand, the H73A mutation would cause ligand switching likely to a water 

molecule or other local residue (Li et al, 2011). However, the resonance Raman spectra 

show only Fe-S stretching with no indication of an oxygenic ligand. Similarly, if Cys98 

acted as a cluster ligand, the C98S mutation would show cluster binding through an oxygen 

ligand, however the spectra only show Fe-S stretching. 

Based on resonance Raman data of the WT [2Fe-2S] Grx4-YrbA complex 

suggesting partial His-ligation, and the presence of His63 in YrbA, the effect of mutating 

this His to Ala (H63A) and Cys (H63C) was investigated. Additionally, the effects of 

mutating His20, His27, and Ser 26 residues were examined via mutations to Ala or Cys 

(H20A, H27A, H27C, and S26A). The H20A, H27A, H27C, and S26A mutants all 

copurified Grx4 and bound a [2Fe-2S] cluster (Figure 2.15). While there were slight 

variations in UV-visible absorption and CD spectra for these mutants, the overall character 

of the spectra are very similar. Further, Fe-S cluster-loading in all of these mutants is close 

to WT levels, suggesting these mutants do not directly affect the Fe-S cluster binding. 

Although the H63A/C mutants also copurified with Grx4 and still bound a [2Fe-

2S] cluster, the UV-visible absorption and CD spectra were almost identical to that of the 

[2Fe-2S] Grx4 homodimer (Figure 2.15). This suggests that while the YrbA H63A/C 

mutants can still interact with Grx4, YrbA can no longer bind directly to the Fe-S cluster.  
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Table 2.5. Fe-S cluster-loading in YrbA and BolA mutants. 

 

sample Fe S2- GSH Fe:S:GSH 

Grx4 1.5 ± 0.3 1.5 ± 0.2 1.1 ± 0.2 1:1:0.7 

Grx4-YrbA 1.0 ± 0.1 0.9 ± 0.1 0.4 ± 0.1 1:0.9:0.4 

H20A 0.81 0.81 0.32 1:1:0.4 

S26A 0.80 1.39 0.30 1:1.7:0.4 

H27A 0.64 0.81 0.51 1:1.3:0.8 

H27C 0.46 0.67 0.23 1:1.5:0.5 

H63A 0.74 1.09 0.81 1:1.5:1.1 

H63C 0.68 0.95 0.86 1:1.4:1.3 

Grx4-BolA 1.6 ± 0.3 1.7 ± 0.5 0.5 ± 0.2 1:1.1:0.4 

H29A 0.36 0.11 0.49 1:0.3:1.4 

S37A 0.67 1.14 0.15 1:1.7:0.2 

H38A 0.45 0.51 0.29 1:1.1:0.6 

H38C 0.77 1.25 0.45 1:1.6:0.6 

H73A 0.90 1.07 0.46 1:1.2:0.5 

C98S 1.39 1.39 0.32 1:1:0.3 

C98H 1.33 2.00 0.44 1:1.5:0.3 
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Figure 2.14. Comparison of Resonance Raman spectra of (A) [2Fe-2S] Grx4-BolA WT, 

H73A, and C98S, and (B) [2Fe-2S] Grx4-YrbA H63A and Grx4-BolA H73A. 
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Figure 2.15. Comparison of UV-visible absorption (top panels) and CD spectra (bottom 

panels) of [2Fe-2S] Grx4-YrbA mutants. (A) YrbA H20A and S26A mutants compared to 

WT. (B) YrbA H27A and H27C mutants compared to WT. (C) YrbA H63A and H63C 

mutants compared to WT and [2Fe-2S] Grx4.  
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Thus, the His63 residue appears to be required for formation of the Grx4-YrbA Fe-S 

complex. Resonance Raman confirms His63 as a cluster ligand, as the spectra for [2Fe-2S] 

Grx4-YrbA H63A shows loss of the peak at 264 cm-1, consistent with loss of YrbA His63 

as a cluster ligand (Figure 2.14). Moreover, GSH content in these mutants show ~1 GSH 

per Fe, which is equivalent with the cluster on Grx4 (two GSH per [2Fe-2S]) rather than 

Grx4-YrbA (one GSH per [2Fe-2S], Table 2.5). Taken together, this data reinforces the 

role of His63 as an Fe-S cluster ligand in [2Fe-2S] Grx4-YrbA. 

BolA and YrbA do not bind to the mreB promoter region. BolA is thought to be 

involved in the regulation of proteins involved in cell wall synthesis, specifically MreB, 

PBP5, and PBP6. MreB is structurally related to actin, is required for cytoskeleton 

formation, and helps maintain the cellular rod shape. PBP5 and PBP6 are penicillin-binding 

proteins that act as cell wall biosynthesis enzymes, and are involved in cell elongation and 

division. While MreB expression is repressed by BolA, PBP5/6 expression is induced by 

BolA. In addition, overproduction of PBP5 produces spherical cells, comparable to the 

round morphology produced by overexpression of BolA protein. As mentioned previously, 

BolA was shown to bind to the promoter regions of the mreB, dacA (coding for PBP5), and 

dacC (PBP6) genes using SPR (Freire et al, 2009; Guinote et al, 2011). However, no 

previous characterization had been done using footprinting or gel shifts. In addition, His-

tagged BolA was immobilized and used as the ligand, although the target DNA is usually 

the ligand since immobilizing the protein may block the binding site. Target DNA length 

is normally limited to the binding site with SPR to decrease non-specific binding, however 

the DNA used in these studies was 300 bp long, and no competitor DNA was used. Table 

2.6 shows the SPR data from these experiments. The KDs obtained for experiments with 
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Table 2.6. SPR data of BolA DNA-binding affinity experiments. 

 

Target DNA Kd (nM) Regulation type Reference 

mreB promoter 6.9 Repressor Freire, et al. 2009 

bolA ORF 23.6 N/A Freire, et al. 2009 

PBP5 promoter 1.8 Activator Guinote, et al. 2011 

PBP5 ORF 120 N/A Guinote, et al. 2011 

PBP6 promoter 5.3 Activator Guinote, et al. 2011 

PBP6 ORF 102 N/A Guinote, et al. 2011 

RNase II ORF 365 N/A Guinote, et al. 2011 
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promoters were in the range expected for protein-DNA binding (2-7 nM), while the control 

experiments with PBP5/6 and RNase II open reading frames (ORFs) had 20-100 times 

weaker binding. However, the control with the BolA ORF had a KD of 23.6 nM only 3.5-

fold weaker than the interaction with the mreB promoter and within the range expected of 

a protein-DNA interaction.  

Due to the faults in the SPR experiments, we wanted to replicate the BolA-mreB 

interaction using electrophoretic mobility shift assays (EMSA). The same DNA region 

used in the SPR experiments was amplified using IRDye-labeled primers, which contained 

three putative promoter regions (Figure 2.16A). Binding conditions used in the EMSAs 

were also replicated from the SPR experiments. In addition to testing the DNA-binding 

activity of the BolA protein, the [2Fe-2S] Grx4-BolA complex was tested to determine if 

interaction with a glutaredoxin would alter the binding. Figure 2.16B shows neither form 

of the BolA protein will bind to the mreB promoter region under the conditions tested. 

Since the structures of the BolA proteins are well-conserved, including with YrbA, the 

functions may also be conserved. Thus, the apo YrbA and [2Fe-2S] Grx4-YrbA complexes 

were also tested for DNA-binding activity. As with the BolA complexes, Figure 2.16C 

shows neither form of the YrbA protein will bind to the mreB promoter region under the 

conditions tested. The lack of DNA binding in these experiments does not necessarily mean 

the BolA proteins will not bind to DNA, as the right conditions for the interaction may not 

have been found. However, given the lack of specificity in the SPR experiments and the 

increased reliability of EMSAs, it seems questionable that the BolA proteins act as 

transcriptional regulators, at least not through direct DNA-binding. 
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Figure 2.16. EMSAs of BolA and YrbA complexes. (A) Graphic representation of DNA 

used in gel shift experiments. PmreB represents putative promoter regions upstream of the 

mreB gene. (B) Gel shift experiments with apo-BolA (right) and [2Fe-2S] Grx4-BolA 

(left). (C) Gel shift experiments with apo-YrbA (right) and [2Fe-2S] Grx4-YrbA (left). 
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CONCLUSIONS 

Monothiol Grxs and BolA proteins have been shown to interact from prokaryotes 

to higher eukaryotes. While Grxs have a reasonably well-established connection to cellular 

iron metabolism, the BolA protein family remains largely uncharacterized. E. coli Grx4 

was previously shown to form a homodimer with a [2Fe-2S] cluster bound with GSH 

ligands, as well as a [2Fe-2S]-bound heterodimer with BolA. Grx4 and YrbA have a 

genetic interaction, but it was not known whether they also form a complex. The physical 

interactions between Grx4 and BolA/YrbA were tested using biophysical and biochemical 

techniques. We determined that coexpression of BolA/YrbA with Grx4 results in distinct 

Fe-S bound heterodimer complexes, which likely do not have redundant cellular functions. 

In E. coli specifically, Grx4 and BolA were shown to interact in vivo by SPA-tag 

purification, although there was no data for an interaction with YrbA. Both BolA and Grx4 

have increased expression once cells enter stationary phase. Furthermore, Grx4 has several 

links to iron homeostasis, as protein levels are increased under iron limitation. While grx4 

knockouts are sensitive to Fe starvation, bolA and yrbA knockouts are not. This suggests 

that the Grx4 monomer or homodimer is involved in some response to Fe starvation, but 

the Grx4-BolA and Grx4-YrbA heterodimers have a separate function. 

Based on this investigation, we developed a structural and interaction model for the 

Grx4 and YrbA/BolA complexes (Figure 2.7 and 2.8 insets). As demonstrated in the crystal 

structure, the cluster in the Grx4 homodimer has all-Cys ligation from active site cysteines 

and non-covalently bound GSH. Addition of YrbA or BolA displaces one Grx4 monomer 

and one GSH molecule to form the Fe-S heterodimer. The released Grx4 monomer also 

interacts with another YrbA/BolA molecule to form the apo heterodimer. BolA likely has 
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all-Cys ligation based on EPR and resonance Raman studies. Spectroscopic analysis on the 

Grx4-YrbA complex indicate the presence of a His ligated to the cluster, likely provided 

by YrbA. Additionally, EPR and resonance Raman data reveal that the [2Fe-2S] 

heterodimer complexes are more stable than the Grx4 homodimer. Heterodimer clusters 

are more stable than homodimer cluster (EPR). Conversion from the homodimer to the 

heterodimer complexes monitored by CD indicates that the heterodimers are the 

thermodynamically favored form. Many of the features of the Grx4 and YrbA/BolA 

interactions are comparable to what has been found in the S. cerevisiae and human 

homologues. The Grx4-YrbA complex is most similar with a His cluster ligand, while the 

Grx4-BolA complex with all-Cys cluster ligation has not been observed before in other 

homologues. 

Mutagenesis experiments confirmed the presence of a nitrogen cluster ligand in 

Grx4-YrbA, provided by YrbA His63. Grx4 likely donates its active site cysteine and the 

cysteine of a GSH molecule, though the nature of the fourth ligand is still unknown. It is 

not expected to be another His residue or GSH based on spectroscopic, mutagenesis, and 

biochemical studies. YrbA also does not contain any cysteine residues. It has been 

postulated that the yeast Grx3-Fra2 complex has an open cluster ligand for interaction with 

a partner or target protein, which may also be the case with Grx4-YrbA. We expect ligand 

from Grx4 to be the same in the Grx4-BolA complex, however the ligands from BolA are 

still unknown. Spectroscopic analysis of the complex suggests no His ligation, and the only 

cysteine residue in BolA (Cys98) had no effect on the complex characteristics when 

mutated to a serine or a histidine. It is possible that this complex functions differently from 

Grx4-YrbA, and may also have a different structure. BolA may bind near the cluster on 
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Grx4, while Grx4 provides more cluster ligands, or a small molecule could provide 

additional cluster ligands. Future studies will address these possibilities. 

It is apparent that Fe-S cluster bound monothiol Grxs function in cluster building 

and delivery, as well as iron trafficking. E. coli Grx4 can transfer its cluster to apo-

ferredoxin in vitro. While the Grx4-BolA complex could also transfer its cluster to 

ferredoxin, the transfer was not as efficient, and not likely to occur in vivo. Grx4 is clearly 

linked to the Suf Fe-S assembly system, both genetically in E. coli through phenotypic 

similarities and the synthetic lethality with Isc, as well as physically in E. coli and plants. 

BolA proteins are also linked to Fe-S cluster assembly across species, although not as 

evidently as the Grxs. In plants, the SufE homologue contains a BolA domain. In addition, 

bolA genes are often found near genes involves in iron and sulfur metabolism in bacteria. 

Based on this information, a model can be constructed for the interactions between 

Grx4 and BolA/YrbA in E. coli. It is doubtful that the Grx4 homodimer acts as an iron 

chaperone to many targets, as a phenotype is only seen under iron limitation conditions. 

Rather, Grx4 may be a cluster or iron donor to specific proteins only when the Suf pathway 

is activated. Grx4 heterodimers with BolA or YrbA are also unlikely to act as general 

cluster transfer proteins, since BolA/YrbA do not have iron-related phenotypes, and the 

co-existence of apo heterodimers would make cluster release more difficult. Instead, an 

increase in BolA or YrbA protein may limit Grx4 homodimer activity and convert the 

complex for cluster transfer to a specific target. Alternatively, as the BolA proteins are also 

linked to sulfur metabolism, they may be involved in regulating sulfur utilization in the Suf 

system. Taken as a whole, it is evident that Grx4 homodimers and heterodimers with 

BolA/YrbA likely have different functional roles associated with Fe-S cluster biogenesis. 
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CHAPTER 3 

GRX4 REGULATES PHP4 FUNCTION VIA FE-S CLUSTER BINDING IN S. POMBE 

 

ABSTRACT 

The fission yeast Schizosaccharomyces pombe expresses the CCAAT-binding 

factor Php4 in response to iron deprivation. Php4 forms a transcription complex with Php2, 

Php3, and Php5 to repress the expression of 86 genes. Approximately half of them (47) 

encode proteins that have been assigned in iron-related processes. In vivo data shows that 

the function and location of Php4 is regulated in an iron-dependent manner by the cytosolic 

monothiol glutaredoxin Grx4. In this study, we aimed to define these protein-protein and 

protein-metal interactions. Grx4 was found to bind a [2Fe-2S] cluster with spectroscopic 

features similar to other monothiol glutaredoxins that have been characterized. Grx4 and 

Php4 also copurify as a complex, which can bind a [2Fe-2S] cluster that is 

spectroscopically distinct from the cluster on Grx4 alone. In vitro titration experiments 

suggest that these Fe-S complexes may not be interconvertable. Additionally, conserved 

cyteines in these proteins, Grx4 C172 and Php4 C221/C227, are necessary for Fe-S cluster 

binding and strengthening complex formation. Together, these results show that Grx4 

controls Php4 function and location through binding of a bridging Fe-S cluster between the 

proteins. 



www.manaraa.com

114 
 

INTRODUCTION 

Iron is an essential element for most organisms. Its ability to act as both an electron 

donor and acceptor by cycling between ferrous (Fe2+) and ferric (Fe3+) forms make iron 

useful as a cofactor in a variety of biological processes. This includes the tricarboxylic acid 

(TCA) cycle, DNA biosynthesis, and respiration. However, the reactive properties of iron 

can render it toxic when combined with reactive oxygen species, producing damaging free 

radicals. Consequently, cells must closely regulate iron uptake and usage to maintain a 

balance between sufficient and excess levels. 

The fission yeast Schizosaccharomyces pombe employ two transcription factors to 

control cellular iron levels, Fep1 under iron replete conditions, and Php4 under iron 

deprivation. Fep1 is a GATA-type transcriptional repressor which mainly controls iron 

uptake genes (fip1+, fio1+, frp1+) (Pelletier et al, 2002). When cells are iron-replete, Fep1 

binds to GATA sequences for these genes and represses their transcription, blocking the 

iron uptake system. Php4 also acts as a transcriptional repressor in the CCAAT-binding 

complex (Mercier et al, 2006). In S. pombe, the CCAAT-binding complex is composed of 

Php2, Php3 and Php5. The Php2/3/5 heterotrimer binds CCAAT cis-acting elements, 

whereas Php4 lacks DNA-binding activity. Under iron-deplete conditions, Php4 is 

recruited in the CCAAT-binding complex and down-regulates gene expression. It has also 

been shown that Fep1 and Php4 reciprocally regulate expression of the other in an iron-

dependent manner. 

Php4 controls genes coding for proteins in iron-dependent metabolic pathways such 

as the TCA cycle, mitochondrial respiration, amino acid biosynthesis, heme biosynthesis, 

and iron-sulfur cluster assembly (Mercier et al, 2008). The main function of Php4 is iron 
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conservation: when cellular iron is limiting, expression of genes encoding iron-containing 

proteins is repressed. Work in a fep1Δ strain showed that Php4 is also regulated by iron at 

the protein level, and that glutathione (GSH) is required for iron sensing. Php4 binds to 

target DNA through the CCAAT-binding complex, composed of Php2, Php3, and Php5 

(Mercier and Labbé, 2009). Php2/3/5 are constitutively expressed, but Php4 is only induced 

under low iron conditions, where it can then modify the complex for iron-starvation 

dependent repression of genes. 

While expression of Php4 is controlled by Fep1, its localization is controlled by the 

exportin Crm1 and the monothiol glutaredoxin Grx4 (Mercier and Labbé, 2009). Under 

iron-deplete conditions, Php4 accumulates in the nucleus. When iron is added, Php4 is 

relocalized to the cytosol, which is dependent on a leucine-rich nuclear export signal (NES) 

and Crm1. Grx4 physically interacts with the C-terminal region Php4, and is also required 

for Crm1-mediated export and iron inhibition. Mapping experiments revealed that Php4 

interacts with the N-terminal (thioredoxin-like, TRX) and C-terminal (glutaredoxin-like, 

GRX) regions of Grx4 (Vachon et al, 2012). Association with the TRX domain is 

constitutive, and requires Cys35 in the TRX-like WAAPCK sequence, while association 

with the GRX domain is dependent on iron and requires Cys172 of the CGFS active site. 

The GRX domain alone is adequate for iron-dependent inhibition of Php4, and is required 

for relocalization of the Php4-Grx4 complex from the nucleus to the cytosol. In addition, 

Cys221 and Cys227 in the C-terminus of Php4 are required for interaction with the GRX 

domain, and may be involved in iron binding. 

Grx4 is the only cytosolic monothiol glutaredoxin in S. pombe, and is highly 

homologous with S. cerevisiae Grx3/4. There are two other monothiol Grxs, Grx3 and 
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Grx5 (Chung et al, 2005). Grx3, which is most closely related to the S. cerevisiae dithiol 

Grx2, contains a CPYS active site and is localized to the nuclear rim and the ER. Grx5 

localized to the mitochondria and is highly homologous with S. cerevisiae Grx5, with a 

CGFS active site and no TRX domain. In S. pombe, Grx4 and Grx5 were found to be 

essential for normal cell growth under aerobic conditions. It has been well-established that 

monothiol Grxs bind [2Fe-2S] clusters with two glutathione molecules, and are intricately 

involved in iron homeostasis (Picciocchi et al, 2007; Bandyopadhyay et al, 2008a; Iwema 

et al, 2009; Li et al, 2009; Chapter 2). 

Many other species of fungi (apart from Saccharomyces species) also contain both 

an iron-regulatory GATA-type repressor (like Fep1) and an iron-dependent negative 

regulatory subunit (like Php4) of the CCAAT-binding complex (Haas et al, 2008). Known 

Php4 homologues, including HapX from Aspergillus nidulans, HapX from Cryptococcus 

neoformans, and Hap43 from Candida albicans, contain the highly-conserved pair of 

cysteines found in Php4 (C221 and C227) (Hortschansky et al, 2007; Schrettl et al, 2010; 

Hsu et al, 2011). Specifically in A. nidulans, HapX was shown to down-regulate iron-using 

proteins under iron starvation (Hortschansky et al, 2007). Similar to Php4, HapX is also 

regulated post-translationally by cellular iron. 

The budding yeast S. cerevisiae contains the transcriptional activators Aft1 and 

Aft2, which induce expression of genes involved in iron metabolism and uptake under iron 

starvation (Yamaguchi-Iwai et al, 1996; Blaiseau et al, 2001; Rutherford et al, 2003; 

Shakoury-Elizeh et al, 2004; Philpott and Protchenko, 2008). Under iron-replete 

conditions, Aft1/2 is inhibited by the monothiol glutaredoxins Grx3/4 and the BolA-like 

protein Fra2 (Ojeda et al, 2006; Kumánovics et al, 2008; Li H et al, 2011a; Li H and Outten, 
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2012b; Poor et al, 2014). Grx3/4 forms a [2Fe-2S] cluster-ligated complex with Fra2, 

which then transmits an unidentified signal of the iron status to Aft1/2 (Chen et al, 2004; 

Rutherford et al, 2005; Kumánovics et al, 2008; Li H et al, 2009; Hoffman et al, 2011). 

This signal, which is dependent on mitochondrial Fe-S clusters, inactivates Aft1/2 and 

leads to nuclear export of the protein (Ueta et al, 2012; Philpott and Protchenko, 2008; 

Kaplan and Kaplan, 2009; Ehrensberger and Bird, 2011). Defects in mitochondrial Fe-S 

cluster assembly or GSH biosynthesis, as well as deletion of Grx3/4 or Fra2 causes Aft1/2 

to constitutively activate target genes, regardless of cellular iron status. 

Recent work on the BolA proteins in S. pombe, Uvi31, Fra2, and Fra3, shows a 

conserved role in regulating iron-responsive transcription factors (Jacques et al, 2014). 

Fra2, homologous to Fra2 in S. cerevisiae, is required for iron-dependent inhibition of 

Fep1, independent of Php4. Fra2 forms a complex with Grx4 and Fep1, similar to the 

Fra2/Grx3/Aft1 complex, in order to control DNA binding and localization. However, 

neither Fra2 nor the other BolA proteins were found to have any effect on Php4 function 

or localization. This suggests that Php4 is regulated at the protein level by Grx4 without 

the aid of BolA-like proteins. 

In order to understand how Grx4 physically interacts with and regulates Php4 at the 

protein level, we expressed and characterized the proteins using biochemical, analytical, 

and spectroscopic techniques. We determined that Grx4 binds a [2Fe-2S] cluster similar to 

other monothiol glutaredoxins. While Php4 does not purify with iron or an Fe-S cluster 

alone, it does bind a [2Fe-2S] cluster in complex with Grx4. In addition, we found that 

Grx4 C172 and Php4 C221/C227 are required for Fe-S cluster binding and aid in the 
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interaction between Php4 and Grx4. These results reveal that Grx4 regulates Php4 function 

at the protein level through a [2Fe-2S] cluster. 

MATERIALS AND METHODS 

Plasmids. The ORF of S. pombe Php4 was amplified from S. pombe genomic 

DNA by PCR and cloned into the NcoI and SalI sites of pRSFDuet-1 (Novagen) to create 

pRSFDuet-1-Php4, subsequently generating His-tagged Php4.  The ORF of S. pombe Grx4 

was amplified from S. pombe genomic DNA by PCR and cloned into the NdeI and XhoI 

sites of pRSFDuet-1 to create pRSFDuet-1-Grx4.  Dual expression plasmids for Php4-Grx4 

were made by inserting the Php4 ORF into the pRSFDuet-1-Grx4 plasmid.  Php4 and Grx4 

mutants were created by site-directed mutagenesis of the above plasmids. 

Protein Expression and Purification. Overexpression of Grx4 was performed in 

the E. coli BL21(DE3) strain in LB media at 37 °C. Cells were grown until A600 = 0.6-0.8, 

then were induced with 20 μM isopropyl β-D-thiogalactosidase (IPTG) and incubated at 

25 °C.  Cells were collected 18 h after induction and resuspended in 50 mM Tris-HCl, pH 

8.0, followed by sonication and centrifugation to remove cell debris.  The cell-free extract 

was subjected to ammonium sulfate precipitation and the protein came out in the 40% cut. 

The protein pellet was resuspended in 50 mM Tris-HCl, pH 8.0, 750 mM (NH4)2SO4 and 

loaded onto a Phenyl Sepharose column (GE Healthcare) equilibrated with 50 mM Tris-

HCl, pH 8.0, 750 mM (NH4)2SO4, 100 mM NaCl.  The protein was eluted with a 750-0 

mM (NH4)2SO4 gradient, and fractions containing Grx4 as judged by SDS-PAGE and UV-

visible spectroscopy were collected and concentrated. Concentrated protein was loaded 

onto a HiLoad Superdex 75 gel filtration column (GE Healthcare) equilibrated with 50 mM 

Tris-HCl, pH 8.0, 150 mM NaCl.  The purest and most cluster-loaded fractions of Grx4 as 
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judged by SDS-PAGE and UV-visible spectroscopy were collected, concentrated, and 

stored at -80 °C. Coexpression of Php4 with Grx4 was performed with the pRSFDuet-1-

Php4-Grx4 expression plasmids transformed into E. coli BL21(DE3) using the procedure 

described above for Grx4. 

Overexpression of Php4 was performed in the E. coli BL21(DE3) strain in LB 

media at 37 °C.  Mid-logarithmic-phase cells (A600 = 0.6-0.8) were induced with 1 mM 

IPTG and grown at 16 °C.  Cells were collected 18 h after induction and resuspended in 50 

mM MES, pH 6.0, followed by sonication and centrifugation to remove cell debris.  The 

cell-free extract was loaded onto a SP FF cation-exchange column (GE Healthcare) 

equilibrated with 50 mM MES, pH 6.0.  Most of the protein eluted in the wash step and 

was collected and exchanged into 50 mM Tris-HCl, pH 8.0 buffer.  This was loaded to a 

DEAE anion-exchange column (GE Healthcare) equilibrated with 50 mM Tris-HCl, pH 

8.0. The protein was eluted with a 0-1 M NaCl gradient using 50 mM Tris-HCl, pH 8.0, 1 

M NaCl.  Fractions containing Php4 as judged by SDS-PAGE were collected, concentrated, 

and loaded onto a HiLoad Superdex 75 gel filtration column (GE Healthcare) equilibrated 

with 50 mM Tris-HCl, pH 8.0, 150 mM NaCl.  The purest fractions of Php4 as judged by 

SDS-PAGE were collected, concentrated, and stored at -80 °C. All Php4 and Grx4 mutants 

(either alone or coexpressed) were purified using the procedure as their wild-type forms. 

All purifications were carried out under anaerobic conditions (O2 < 5 ppm) in a glovebox 

(Coy Laboratory Products), with the exception of Php4 WT and mutants. 

Biochemical Analyses. Protein concentrations were determined by the 

Bradford Assay (Bio-Rad) using bovine serum albumin as the standard.  Iron 

concentrations were determined using the colorimetric ferrozine assay (Riemer et al, 2004). 
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Acid-labile sulfur concentrations were determined using published methods (Beinert, 

1983; Broderick et al, 2000). For GSH measurements, the purified Fe-S protein complexes 

were denatured and precipitated with 1% 5-sulfosalicylic acid, and GSH in the supernatant 

was measured by the 5, 5’-dithiobis(2-nitrobenzoic acid) -GSSG reductase cycling assay 

as described previously (Outten and Culotta, 2004). 

Analytical and Spectroscopic Methods. Analytical gel filtration analyses were 

performed on a Superdex 200 10/300 GL column (GE Healthcare) equilibrated with 50 

mM Tris-HCl, pH 8.0, 250 mM NaCl, 5 mM GSH and calibrated with the low molecular 

weight gel filtration kit (GE Healthcare). Mass spectrometry analysis of purified proteins 

was determined using a Bruker UltraFlex MALDI-TOF/TOF mass spectrometer. A 

saturated solution of sinapinic acid in 50% acetonitrile and 0.1% trifluoroacetic acid was 

used as the matrix. 

UV-visible absorption spectra were recorded using a Beckman DU-800 

spectrophotometer. CD spectra were recorded under anaerobic conditions on identical 

samples using a Jasco J-715 or J-800 spectropolarimeter (Jasco, Easton, MD). EPR spectra 

were recorded using a Bruker EMX plus spectrometer (Bruker, Billerica, MA), equipped 

with an Oxford ESR900 continuous flow cryostat (Oxford Instruments, Oxfordshire, UK), 

and quantified under nonsaturating conditions by double integration against a 1.0 mM 

CuEDTA standard. EPR conditions were as follow: microwave frequency, ~9.4 GHz, 

modulation frequency, 100 kHz, modulation amplitude, 1.0 mT, microwave power, 10 

mW, and temperature 10-20 K. 

Iron-sulfur cluster reconstitutions. Purified Grx4 or Php4-Grx4 was incubated with 

20-fold excess of ferrous ammonium sulfate, 20-fold excess of L-cysteine, a catalytic 
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amount of IscS, and 5 mM GSH under anaerobic conditions on ice for 2 h. Excess 

reagents were purified out using a phenyl sepharose column (GE Healthcare) with a 

decreasing linear gradient from 750 to 0 mM ammonium sulfate, and the colored 

fractions were pooled and concentrated. 

Surface plasmon resonance. Binding characteristics of the apo Php4-Grx4 WT 

and mutant complexes were determined by SPR, using a Biacore 3000 (Biacore, GE 

Healthcare). His-Php4 (WT or C221/227A) was immobilized on a sensor chip NTA 

activated with Ni2+ according to the manufacturer’s instructions. Grx4 (WT or C172A) was 

injected over the flow cell for 5 min at four different concentrations between 0.5 and 5 

mg/ml and a blank using a flow rate of 10 μl/min. The assays were run at 25° C in 50 mM 

Tris-HCl, pH 8.0, 0.005 % Tween-20. All experiments were done with triplicate injections 

of each protein concentration. Bound protein was removed with a 30 sec wash of 50 mM 

Tris-HCl, pH 8.0, 0.005 % Tween-20, 300 mM imidazole using a flow rate of 30 μl/min. 

NTA sensor chip was regenerated with 350 mM EDTA. Data analysis was performed using 

Scrubber version 2.0a (BioLogic Software). 

CD-monitored titrations of Php4 and Grx4. Several titration methods were used in 

an attempt to convert between Grx4 homodimer and Php4-Grx4 heterocomplexes. All 

samples were prepared and scanned under anaerobic conditions with 1 mM GSH, and the 

[2Fe-2S] content was kept constant at 50 μM. (1) Increasing amounts of Php4 were added 

to [2Fe-2S] Grx4 up to a 2.5-fold excess of Php4. When no spectral changes were observed 

after 2.5-fold excess Php4, 5 mM DTT was added to reduced and remaining disulfides. 

Php4 was also pre-reduced with 5 mM DTT, and then desalted anaerobically before mixing 

with [2Fe-2S] Grx4. (2) Purified [2Fe-2S] Php4-Grx4 was incubated with a 2.5-fold excess 
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of Grx4 monomer. The mixed sample was scanned after five and ten minutes. (3) Apo-

Php4-Grx4 was added to [2Fe-2S] Grx4, in 1:1, 1:2, and 1:4 ratios of [2Fe-2S]:Php4-Grx4. 

(4) Php4 was titrated into [2Fe-2S] Grx4 without and with the presence of Fra2 from S. 

cerevisiae. A 1:2 mixture of [2Fe-2S] Grx4:Fra2 was used as a control. Php4 was added to 

this mixture in 2-fold and 5-fold excesses relative to [2Fe-2S]. (5) [2Fe-2S] Grx4 was 

mixed with Php4 in S. pombe whole cell extract, in 1:4 and 1:10 ratios of [2Fe-2S]:Php4. 

Control mixtures were extract alone, [2Fe-2S] Grx4 in extract, and Php4 in extract. 

RESULTS 

Grx4 binds a [2Fe-2S] cluster similar to other monothiol glutaredoxins. It has 

been well-established that monothiol Grxs form homodimers with a bridging [2Fe-2S] 

cluster via their active site cysteines and two non-covalently bound glutathione molecules 

(Picciocchi et al, 2007; Bandyopadhyay et al, 2008a; Iwema et al, 2009; Li H et al, 2009). 

Grx4 was overexpressed in E. coli and purified to determine if it would bind an iron-sulfur 

cluster in a similar manner. The protein purified with a reddish-brown color, and thus was 

characterized with spectroscopic and biochemical analysis. The UV-visible absorption 

spectrum of Grx4 is nearly identical to other monothiol glutaredoxins from S. cerevisiae 

(Sc. Grx3) and E. coli (Ec. Grx4), with peaks at 323, 413, and 445 nm, indicative of a [2Fe-

2S] cluster (Figure 3.1). As expected, the CD spectra for S. pombe Grx4 was also 

comparable to Sc. Grx3 and Ec. Grx4. Positive peaks at 312, 460, and 550-590 nm and 

negative peaks at 348, 408, and 518 nm are characteristic of a [2Fe-2S] cluster. 

Grx4 and Php4 copurify as a complex with a bound [2Fe-2S] cluster. To determine 

if Grx4 interacts with Php4, the proteins were coexpressed and purified. The two proteins 

formed a complex that remained intact throughout the purification process, with a reddish- 
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Figure 3.1. Comparison of UV-visible absorption (top) and CD spectra (bottom) of [2Fe-

2S] Grx4 homodimer from S. pombe (Sp, black line) with [2Fe-2S] Grx3 from S. cerevisiae 

(Sc, gray line, Li et al, 2009) and [2Fe-2S] Grx4 from E. coli (Ec, light gray broken line, 

Chapter 2). 
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brown color indicative of some form of iron binding. The identity of this chromophore was 

investigated. UV-visible absorption and CD spectra are indicative of [2Fe-2S] cluster 

binding (Figure 3.2). The UV-vis spectrum, while somewhat similar to that of the Grx4 

homodimer, has a shoulder around 320 nm instead of a distinct peak, and the two peaks in 

the 400-450 nm range shift to one distinct peak at 408 nm with a small shoulder around 

440 nm. The CD spectrum of Php4-Grx4 also has some similarities to Grx4 homodimer, 

though the Fe-S clusters are visibly distinct. The features at ~310 and 350 nm become more 

distinct, and the second negative feature at 408 is shifted to 422 nm with the addition of a 

positive feature at 392 nm. The positive region ~450-500 nm is expanded, with a distinct 

peak at 470 nm, a broad feature at 510-550 nm, and no negative areas. Iron and acid-labile 

sulfide analyses show an Fe:S ratio close to 1:1 for Grx4 and Php4-Grx4. Analytical data 

indicated 0.84 Fe, 0.83 S2-, and 0.70 GSH per Grx4 homodimer, and 0.81 Fe, 0.78 S2-, and 

0.32 GSH per Php4-Grx4 trimer (Table 3.1). This suggests ~0.42 [2Fe-2S] clusters per 

Grx4 and ~0.41 [2Fe-2S] clusters per Php4-Grx4. 

The EPR spectra of Grx4 and Php4-Grx4 give some information about cluster 

stability and the nature of the ligands (Figure 3.3). Both samples showed instability upon 

reduction with excess sodium dithionite and with any extensive incubation time. Thus, 

samples were reduced with stoichiometric amounts of dithionite under anaerobic 

conditions, and frozen under liquid nitrogen within five minutes. [2Fe-2S]+ Grx4 

homodimer gave a rhombic S = ½ EPR signal, g1 = 2.01, g2 = 1.94, and g3 = 1.90, 

accounting for less than 0.1 spins per cluster. This signal is characteristic of a [2Fe-2S]+ 

cluster with all-cysteine ligation, with gav = 1.95. This signal is similar to other [2Fe-2S]-

bound monothiol Grxs, which are also known to be reductively labile, consequently having  
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Figure 3.2. Comparison of UV-visible absorption (top) and CD spectra (bottom) of [2Fe-

2S] Php4-Grx4 heterodimer in black with [2Fe-2S] Grx4 homodimer in gray. 
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Table 3.1. Fe, S2-, and GSH measurements in purified Fe-S proteins.1 

 

Protein Fe S GSH Fe:S:GSH 

Grx4 0.84 ± 0.18 0.83 ± 0.10 0.70 ± 0.17 1:1:0.8 

Php4-Grx4 0.81 ± 0.05 0.78 ± 0.08 0.32 ± 0.06 1:1:0.4 

1Values are reported per complex. Data are the average of three independent samples. 
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Figure 3.3. Comparison of the X-band EPR spectra of dithionite-reduced [2Fe-2S] Grx4 

(top) with [2Fe-2S] Php4-Grx4 (bottom). The samples were reduced under anaerobic 

conditions by addition of stoichiometric sodium dithionite and frozen within five minutes 

in liquid nitrogen. EPR conditions: microwave frequency, 9.60 GHz, modulation 

frequency, 100 kHz, modulation amplitude, 10 G, microwave power, 10 mW, and 

temperature 10-20 K. 
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a lower number of spins per cluster. Php4-Grx4 also gives a rhombic S = ½ EPR signal, g1 

= 2.00, g2 = 1.96, and g3 = 1.92, accounting for 0.2 spins per cluster. With gav = 1.96, this 

signal is also characteristic of a [2Fe-2S]+ cluster with all-cysteine ligation. As with Grx4, 

the cluster on Php4-Grx4 appears to be reductively labile, due to the low number of spins 

per cluster. 

Expression and purification of recombinant Php4 results in a monomeric protein 

that does not bind Fe or an Fe-S cluster. Purified Grx4 runs ~ 25 kD and Php4 runs ~ 45 

kD on SDS-PAGE, and the Php4-Grx4 complex shows ~ 2:1 ratio of Grx4:Php4 (Figure 

3.4). Analytical gel filtration of Php4 shows a clear monomer peak at 34 kD, and Php4-

Grx4 has a shift in the elution volume to approximately where a trimer of two Grx4 and 

one Php4 would run (expected 89.4 kD, calculated 94.5 kD, Figure 3.5 and Table 3.2). Apo 

Grx4 runs as a mixture of monomer, dimer, and hexamer (~ 22, 47, and 121 kD), while Fe-

S Grx4 runs as a mixture of dimer, tetramer, and octamer (~ 60, 106, and 240 kD). 

However, the Php4-Grx4 complex and both apo and Fe-S Grx4 display significant 

aggregation when applied to gel filtration. This may be due to some instability of the Grx4 

protein, since this aggregation is not seen when Php4 is run alone. 

Taken together, this data shows that Php4 binds a bridging [2Fe-2S] cluster with 

Grx4. The Php4-Grx4 complex is more stable than the Grx4 homodimer based on EPR 

data. Although the gel filtration data is somewhat unclear, the Php4-Grx4 complex appears 

to be larger than a dimer, and may actually be a trimer of one Php4 and two Grx4 molecules. 

Grx4 and Php4-Grx4 may not be interconvertable. In S. cerevisiae, the [2Fe-2S] 

Grx3-Fra2 heterodimer interacts with the Fe-responsive transcription factor Aft2 to 

regulate its activity (Ojeda, et al 2006; Li et al, 2011; Poor et al, 2014). It was demonstrated  
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Figure 3.4. SDS-PAGE of purified proteins. Sizes of protein standards in the marker lane 

(M) are indicated to the left of the gels. Each protein is from individual gels, aligned with 

the marker. Protein bands are identified to the right of the gel. 
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Figure 3.5. Gel filtration of purified proteins. Elution time of protein standards is indicated 

at the top of the profiles, with sizes shown in kD. The top panel shows Php4 WT and 

C221/227A proteins. The middle panel shows Grx4 WT (apo and Fe-S) and C172A 

proteins. The bottom panel shows Php4-Grx4 complexes of WT and Cys mutants.  
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Table 3.2. Molecular weight calculations of complexes from gel filtration. 

 

Protein 
Theoretical 

MW (kD) 

Calculated 

MW (kD) 

Complex 

stoichiometry 

Php4 34.3 34.3 ± 1.09 Monomer 

Php4 (C221/227A) 34.3 50.9 ± 0.88 Monomer 

Apo Grx4 27.1 

21.6 ± 1.76 

46.9 ± 2.45 

121.4 ± 26.1 

Monomer 

Dimer 

Hexamer 

[2Fe-2S] Grx4 55.0 

60.9 ± 0.79 

106.4 ± 3.18 

239.7 ± 6.39 

Dimer 

Tetramer 

Octomer 

Grx4 (C172A) 26.9 
18.8 ± 0.05 

123.8 ± 13.2 

Monomer 

Hexamer 

Php4-Grx4 
62.3 (dimer) 

89.4 (trimer) 
94.5 ± 3.93 Trimer (1 Php4: 2 Grx4) 

Php4-Grx4 

(C172A) 

62.3 (dimer) 

89.4 (trimer) 
429.6 ± 35.6 Aggregation 

Php4 (C221/227A)-

Grx4 

62.3 (dimer) 

89.4 (trimer) 

31.4 ± 10.5 

110.4 ± 7.30 

223.7 ± 39.2 

536.5 ± 38.5 

Php4 monomer? 

Trimer (1 Php4: 2 Grx4) 

Hexamer? 

Aggregation 
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that [2Fe-2S] Grx3-Fra2 can transfer its cluster to Aft2, and this transfer can be monitored 

using CD spectroscopy (Poor et al, 2014). Similarly, the conversion of [2Fe-2S] Grx3 

homodimer to [2Fe-2S] Grx3-Fra2 homodimer upon addition of Fra2 can be monitored by 

CD spectroscopy (Li et al, 2011). We used a similar approach to determine if [2Fe-2S] 

Grx4 could be converted to [2Fe-2S] Grx4-Php4. Addition of Php4 to [2Fe-2S] Grx4 up to 

a 2.5-fold excess did not yield any spectral changes (Figure 3.6). We added 5 mM DTT to 

the 2.5-fold excess mixture (Figure 3.6, “1.0:2.5”, blue line) to reduce any remaining 

disulfides in the proteins, however we only saw partial degradation of the cluster on [2Fe-

2S] Grx4 with no spectral changes (Figure 3.6, “1.0:2.5 +DTT”, purple line). We then took 

purified Php4 and pre-reduced the protein with DTT, removed the DTT by desalting 

anaerobically, followed by mixing with [2Fe-2S] Grx4. Again, this yielded no change in 

the CD spectrum (Figure 3.6, “red Php4 + Fe-S Grx4”, pink line), suggesting that either 

[2Fe-2S] Grx4 is more thermodynamically stable than [2Fe-2S] Php4-Grx4, or that some 

other factor is necessary for conversion. 

We tested whether [2Fe-2S] Grx4 was preferred over [2Fe-2S] Php4-Grx4 by 

adding apo-Grx4 to [2Fe-2S] Php4-Grx4 (Figure 3.7). Addition of excess Grx4 did not 

convert [2Fe-2S] Php4-Grx4 to the Grx4 homodimer, indicating that this form is not 

necessarily preferred thermodynamically. Indeed, a mixture of Php4 and apo-Grx4 

reconstitutes exclusively as [2Fe-2S] Php4-Grx4, with no indication of [2Fe-2S] Grx4 

homodimer formation (Figure 3.8). This indicates that [2Fe-2S] Php4-Grx4 is the 

thermodynamically preferred cluster-bound complex. 

We then thought [2Fe-2S] Grx4 may transfer its cluster to the Php4-Grx4 complex, 

rather than Php4 converting [2Fe-2S] Grx4. In vivo, Php4 and Grx4 interact weakly without  
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Figure 3.6. CD-monitored titration of Php4 into [2Fe-2S] Grx4 homodimer. Increasing 

amounts of apo-Php4 (broken black line) was added to [2Fe-2S] Grx4 (red through dark 

blue spectra). Ratios shown are of [2Fe-2S]:[Php4]. When no spectral changes were 

observed after addition of 2.5-fold excess Php4, 5 mM DTT was added to reduce any 

remaining disulfides (purple spectrum). Pre-reduced Php4 mixed with [2Fe-2S] Grx4 is 

shown as a solid pink line. Purified [2Fe-2S] Php4-Grx4 is shown as a solid black line for 

comparison.  
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Figure 3.7. CD-monitored titration of apo-Grx4 into [2Fe-2S] Php4-Grx4. [2Fe-2S] 

Php4/Grx4 is shown as a solid black line, and Php4-Grx4 mixture with Grx4 is shown as a 

broken gray line. 
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Figure 3.8. Comparison of CD spectra of [2Fe-2S] Php4-Grx4 as-purified (black) with 

reconstituted [2Fe-2S] Php4-Grx4 (gray). 
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Figure 3.9. CD-monitored titration of of apo-Php4-Grx4 into [2Fe-2S] Grx4. [2Fe-2S] 

Grx4 alone (1:0) is shown as a black line, and mixtures of Fe-S Grx4 and Php4-Grx4 are 

shown as a red line (1:1), green line (1:2), and blue line (1:4). All ratios are [2Fe-2S]:Php4-

Grx4.  
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iron, thus this complex may need to be formed before cluster transfer (Vachon et al, 2012). 

This was tested by titrating apo-Php4-Grx4 into [2Fe-2S] Grx4 (Figure 3.9). Even though 

a four-fold excess of Php4-Grx4 was added, the CD spectra did not show any changes. CD 

intensity (ellipticity) decreases in each successive titration mixture as the spectra are not 

normalized to protein content. 

As mentioned previously, S. cerevisiae Aft1/2 will only accept an Fe-S cluster from 

[2Fe-2S] Grx3-Fra2 heterodimer, not from [2Fe-2S] Grx3 homodimer (Li et al, 2011; Poor 

et al, 2014). S. cerevisiae Fra2 is from the highly conserved BolA family of proteins, and 

S. pombe contain a homologue, Fra2. Although in vivo data argues against a role for Fra2 

in the Php4-Grx4 interaction (Jacques et al, 2014), we tested this by mixing [2Fe-2Fe] 

Grx4 with Fra2 and Php4 (Figure 3.10). Since the proteins are so similar (32% identical, 

53% similar), and we had the S. cerevisiae Fra2 available, this was used in the titration. 

Mixing [2Fe-2S] Grx4 with a two-fold excess of Fra2 did give a different CD spectra 

(Figure 3.10, 1:2:0, broken black spectrum), similar to what was reported for purified [2Fe-

2S] Grx3-Fra2 (Li et al, 2009). However, addition of Php4 to this mixture in both two- and 

five-fold excess (Figure 3.10, 1:2:2, red spectrum and 1:2:5, blue spectrum) did not yield 

any further changes from the [2Fe-2S] Grx4 + Fra2 spectrum. This data confirms previous 

reports that Fra2 is not involved in regulating Php4 with Grx4. 

The conversion of [2Fe-2S] Grx4 to [2Fe-2S] Php4-Grx4 may require some other 

protein or factor found in cells. We therefore tested the protein mixtures in S. pombe whole 

cell extract (Figure 3.11). The extract alone did not have a significant CD spectra to 

interfere with the proteins between 350-700 nm. Mixtures of extract with [2Fe-2S] Grx4 

alone have a spectrum identical to that of extract mixed with [2Fe-2S] Grx4 and Php4. If  
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Figure 3.10. CD-monitored titration of Php4 into [2Fe-2S] Grx4 in the presence of Fra2. 

[2Fe-2S] Grx4 alone (1:0:0) is shown as a solid black line, [2Fe-2S] Grx4 with a 2-fold 

excess of Fra2 (1:2:0) is shown as a broken black line, and [2Fe-2S] Grx4 with Fra2 and 

2- or 5-fold excess of Php4 (1:2:2 and 1:2:5) are shown as solid red and solid blue lines, 

respectively. All ratios are [2Fe-2S]:Fra2:Php4.  
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Figure 3.11. CD-monitored titrations of Php4 and Grx4 in S. pombe whole cell extract. 

Extract alone is shown as a broken black line. [2Fe-2S] Grx4 in extract in shown as a solid 

black line. Php4 in extract is shown as a solid gray line. [2Fe-2S] Grx4 mixed with Php4 

in extract is shown as a solid blue line. Purified [2Fe-2S] Php4-Grx4 is shown as a solid 

red line. 
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these complexes are able to convert in vivo, there may be some other protein or small 

molecule required which was not at a high enough concentration in the whole cell extract 

to have an effect. Php4 and Grx4 constitutively interact regardless of iron binding (Vachon 

et al, 2012). Therefore, it is possible that some cluster transfer protein delivers a cluster to 

apo-Php4-Grx4 to fully inactivate Php4, rather than [2Fe-2S] Grx4 providing the cluster. 

Grx4 C172 and Php4 C221/C227 are required for [2Fe-2S] cluster binding and 

strengthening complex formation. Grx4 contains the conserved CGFS active site found 

in most monothiol glutaredoxins. The cysteine residue found is this active site acts as an 

Fe-S cluster ligand in homologues that have been characterized, including in E. coli, yeast, 

and plants (Bandyopadhyay et al, 2008a; Iwema et al, 2009; Li et al, 2009). We tested the 

role of this cysteine, Cys172, in Fe-S cluster binding in S. pombe Grx4 by mutating it to an 

alanine (C172A). Grx4 (C172A) overexpressed alone or with Php4 was found to be 

predominantly insoluble. Insoluble protein pellets did not have any color to indicate Fe or 

Fe-S cluster binding. Soluble protein purified without an Fe-S cluster (data not shown), 

and was found to be relatively unstable. However, Grx4 (C172A) still copurified with 

Php4, thus this interaction is not abolished, consistent with genetic data (Figure 3.4 and 

Vachon et al, 2012). Analytical gel filtration of both Grx4 (C172A) and Php4-Grx4 

(C172A) were mainly aggregated protein (Figure 3.5, middle and bottom panels, 

respectively). Grx4 (C72A) had minor peaks corresponding to ~19 kD and ~124 kD, which 

may be monomer and hexamer forms (Table 3.2). 

As mentioned previously, Php4 contains two conserved cysteines, Cys221 and 

Cys227, which are required for the iron-dependent interaction with Grx4 (Vachon et al, 

2012). These cysteines are hypothesized to act as Fe-S cluster ligands in the Php4-Grx4 
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complex. We tested this by mutating both cysteines to alanines (C221/227A) and 

determining if Php4 still interacted with Grx4. Php4 (C221/227A) overexpressed and 

purified alone is a relatively soluble protein compared to the WT form. Analytical gel 

filtration of this mutant shows a shift to a higher molecular weight, from 34 to 51 kD, 

although it still elutes as a single peak (Figure 3.5, top panel, and Table 3.2). This shift in 

molecular weight may be some indication of protein unfolding due to the mutations. 

Php4 (C221/227A) copurifies with Grx4 (Figure 3.4), and analytical gel filtration 

of the complex shows aggregation similar to the WT complex (Figure 3.5, bottom panel). 

Peaks corresponding to ~31, 110, and 224 kD indicate the presence of monomer (likely 

Grx4), trimer (2 Grx4 + 1 Php4), and hexamer (two trimers), respectively (Table 3.2). Php4 

(C221/227A)-Grx4 binds a [2Fe-2S] cluster with CD spectroscopic features identical to 

that of [2Fe-2S] Grx4 (Figure 3.12). An increase in the features around 500-600 nm 

indicate the presence of a linear [3Fe-4S] cluster, likely due to some degradation. The UV-

visible spectrum of the mutant does not resemble either [2Fe-2S] Grx4 or [2Fe-2S] Php4-

Grx4, but this may be due to the [3Fe-4S] cluster masking features of the [2Fe-2S], as the 

two peaks between 500-650 nm are also indicative of a linear [3Fe-4S] cluster. This data 

suggests that while Php4 (C221/227A) can still interact with Grx4, it can no longer bind a 

[2Fe-2S] cluster. Taken together, this data shows that Grx4 Cys172 and Php4 Cys221 and 

Cys227 are required for Fe-S cluster binding and protein stability. 

Although Php4-Grx4 (C172A) and Php4 (C221/227A)-Grx4 purify as complexes, 

there may be variations in the strength and stability of these interactions compared to WT 

Php4-Grx4. We tested the binding affinity for each of these complexes using surface 

plasmon resonance (SPR), using the apo forms of the proteins for simplicity. The 
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Figure 3.12. Comparison of UV-visible absorption (top) and CD spectra (bottom) of [2Fe-

2S] Php4 (C221/227A)-Grx4 in black with [2Fe-2S] Grx4 WT in dark gray and [2Fe-2S] 

Php4-Grx4 WT in light gray. 
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interaction between Php4 WT and Grx4 WT was found to have a KD of 544 μM when fit 

using steady-state binding affinity (Figure 3.13A). The Php4 (C221/227A)-Grx4 WT 

interaction was significantly weaker with a KD of 1.12 mM when fit using steady-state 

binding affinity (Figure 3.13B). The signal was somewhat noisier for this experiment, 

likely indicating protein instability. The Php4 WT-Grx4 (C172A) interaction was 

calculated to have a KD of 8.09 mM when fit using steady-state binding affinity (Figure 

3.13C). Again, the signal for this experiment had a drastic increase in noise, making the 

data harder to fit. This increase in noise again likely indicates that the protein is not stable, 

and that this interaction is not as strong as the Php4 WT-Grx4 WT interaction. Taken 

together, this data shows that Grx4 C172A and Php4 C221/227A mutations destabilize the 

proteins and weaken formation of the Php4-Grx4 complex. 

DISCUSSION 

In S. pombe, Php4 interacts with Php2, Php3, and Php5 to form the CCAAT-binding 

complex, which controls transcription of several genes encoding iron-binding proteins 

(Mercier and Labbé, 2009). While Php2, Php3, and Php5 are constitutively expressed, 

php4+ transcripts are induced under iron-deplete conditions and repressed under iron-

replete conditions (Mercier et al, 2006). When iron levels are low, Php4 acts as a negative 

regulator of the CCAAT-binding complex, repressing target genes. Previous in vivo work 

on Php4 shows the glutaredoxin Grx4 as a binding partner that regulates Php4 function 

(Mercier et al, 2006; Mercier et al, 2008; Mercier and Labbé, 2009; Vachon et al, 2012). 

The strength of this interaction is iron-responsive and dependent on several conserved Cys 

residues, C172 in Grx4 and C221 and C227 in Php4. Based on this data, we sought to 

characterize the iron-dependent interaction between Grx4 and Php4 in vitro. 
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Figure 3.13. SPR analysis of Php4 binding to Grx4. Steady-state binding data (Response) 

is shown as a function of [Grx4] for (A) Php4 WT to Grx4 WT, (B) Php4 (C221/227A) to 

Grx4 WT, and (C) Php4 WT to Grx4 (C172A). Insets show sensorgrams (Response vs 

time) for interactions. Dissociation constants (KD) are shown at the top right of each graph.  
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Grx4 expressed alone was found to bind a [2Fe-2S] cluster with spectroscopic 

features almost identical to characterized monothiol Grxs. When coexpressed, Php4 and 

Grx4 were found to copurify as a complex with a bound Fe-S cluster. Analysis via UV-

visible absorption, CD, and EPR spectroscopies indicate the presence of a [2Fe-2S] cluster 

distinct from that of [2Fe-2S] Grx4. Furthermore, both of these clusters are relatively labile 

based on overall cluster-loading to the proteins, as well as their EPR signals. Biochemical 

analysis shows that each protein complex is ~40 % loaded with cluster. Interestingly, the 

[2Fe-2S] Php4-Grx4 complex only binds ~1 GSH molecule per cluster, while [2Fe-2S] 

Grx4 binds ~2 GSH molecules per cluster, as expected. In addition, gav values from the 

EPR signals suggest complete cysteine ligation of both clusters. Analytical gel filtration 

and SDS-PAGE data show that Php4 and Grx4 may interact as a trimer of one Php4 and 

two Grx4 molecules. Gel filtration also indicates some instability of Grx4 as there is a 

substantial amount of aggregation when it is run alone or as the Php4-Grx4 complex. 

It was shown previously that S. cerevisiae [2Fe-2S] Grx3 can be converted to [2Fe-

2S] Grx3-Fra2 upon addition of Fra2 protein (Li et al, 2011). Additionally, [2Fe-2S] Grx3-

Fra2 can transfer its cluster to the transcription factor Aft2 when these proteins are mixed 

(Poor et al, 2014). We sought to determine if [2Fe-2S] Grx4 would convert to [2Fe-2S] 

Php4-Grx4, or if there was a cluster transfer in a similar fashion. However, several attempts 

to produce a transition between complexes were not successful. Addition of Php4 to [2Fe-

2S] Grx4 did not convert to the [2Fe-2S] Php4-Grx4 complex. Similarly, addition of apo-

Grx4 to [2Fe-2S] Php4-Grx4 did not convert to [2Fe-2S] Grx4 homodimer. Mixing [2Fe-

2S] Grx4 with apo-Php4-Grx4 complex did not facilitate a cluster transfer, nor did mixing 

[2Fe-2S] Grx4 with Php4 in the presence of Fra2 protein. Assuming there may be another 
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factor involved in cluster transfer/conversion, we attempted mixing [2Fe-2S] Grx4 with 

Php4 in S. pombe whole cell extract. This also did not produce any changes, though if other 

factors are required, they may not have been in high enough concentration in the cell extract 

to be effective. Intriguingly, Fe-S cluster reconstitution of a mixture of Php4 and Grx4 will 

only produce [2Fe-2S] Php4-Grx4, not [2Fe-2S] Grx4 homodimer, indicating the 

heterocomplex is thermodynamically favored.  

Previous in vivo data shows the requirement of Grx4 Cys172 and Php4 Cys221 and 

Cys227 residues for the iron-dependent interaction (Vachon et al, 2012). Mutating Grx4 

Cys172 to an alanine (C172A) abolished Fe-S binding and destabilized the protein, 

although it still interacted with Php4 WT as expected. Mutating Php4 Cys221 and Cys227 

to alanines (C221/227A) prevented formation of [2Fe-2S] Php4-Grx4. While there was still 

a complex formed with Grx4 WT, the [2Fe-2S] cluster was only found on Grx4 based on 

CD spectroscopy. Additionally, SPR analysis of these mutants show protein instability and 

weaker binding compared to the WT proteins. Taken together, this data shows that Grx4 

regulates Php4 activity via complex formation and [2Fe-2S] cluster binding. Fe-S cluster 

binding and complex stability are dependent on conserved cysteines in these proteins, Grx4 

Cys172 and Php4 Cys221 and Cys227. In vivo data indicates a constitutive interaction 

between Grx4 and Php4, where iron-binding facilitates inactivation and relocalization of 

Php4 to the cytosol (Mercier and Labbé, 2009; Vachon et al, 2012). Thus, it seems likely 

that a [2Fe-2S] cluster is delivered to this complex to convert it from apo to holo, rather 

than Php4 binding to and converting [2Fe-2S] Grx4. Further studies are needed to 

determine the identity of the [2Fe-2S] cluster donor protein and the mechanism of transfer. 
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CHAPTER 4 

IDENTIFYING FUNCTIONS OF BOLA-LIKE PROTEINS IN S. CEREVISIAE
2 

 

ABSTRACT 

Saccharomyces cerevisiae express three BolA-like proteins: Fra2, Aim1, and 

Yal044w. While Fra2 function is well-characterized, little is known about the functions of 

Aim1 and Yal044w. Here, we aimed to clarify the roles of these BolA-like proteins using 

both in vivo and in vitro methods. We found that both Aim1 and Yal044w can interact with 

the monothiol glutaredoxin Grx5, although in different manners. The [2Fe-2S] Grx3/Fra2 

complex was also shown to reduce Aft2 DNA-binding affinity through a physical 

interaction. In addition, fra2 mutants were found to have a respiratory defect and 

dysfunctional iron regulation. These results confirm the role of Fra2 in cellular iron 

homeostasis, and give some insight into possible roles of Aim1 and Yal044w. 

 

 

 

 

 

 

 

 

 
 

2Portions of this chapter appear in: Poor CB, Wegner SV, Li H, Dlouhy AC, Schuermann 

JP, Sanishvili R, Hinshaw JR, Riggs-Gelasco PJ, Outten CE, He C. 2014. Proc Natl Acad 

Sci USA. 111: 4043-8. Reprinted here with permission of publisher. 
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INTRODUCTION  

The BolA family of proteins are well-conserved from prokaryotes to eukaryotes, 

although they do not have a known conserved function across species. S. cerevisiae contain 

three BolA-like proteins, Fra2, Yal046c, and Yal044w. Fra2 has an established role in Fe-

S cluster biogenesis and regulating iron homeostasis (Kumánovics et al, 2008). Fra2 

interacts with the monothiol glutaredoxins Grx3/4 in order to regulate the iron-responsive 

transcription factors Aft1/2 (Li H et al, 2009; Li H et al, 2011a). 

Aft1 and Aft2 activate the iron regulon under low-iron conditions, controlling iron 

utilization and oxidative stress response (Blaiseau et al, 2001). Aft1/2 activity is controlled 

by mitochondrial Fe-S cluster assembly and interaction with Grx3/4 (Rutherford et al, 

2005; Ojeda et al, 2006). Grx3/4 convey some signal from the mitochondria to Aft1/2 about 

Fe-S cluster synthesis, which in turn is used to regulate localization of the proteins (Pujol-

Carrion et al, 2006). Although Aft1 and Aft2 are paralogues, they regulate discrete sets of 

genes (Courel et al, 2005). In this study, we tracked iron regulation and DNA-binding 

affinity by looking at two specific genes: FET3 and MRS4. FET3 is involved in iron uptake 

and is controlled mainly by Aft1, while MRS4 is involved in mitochondria iron transport 

and is mainly controlled by Aft2. 

In addition to the cytosolic glutaredoxins Grx3/4, S. cerevisiae contain a 

mitochondrial form, Grx5. Like the cytosolic proteins, Grx5 is also involved in cellular 

iron homeostasis, specifically it is required for Fe-S enzyme activity and mitochondrial Fe-

S assembly (Rodríguez-Manzaneque et al, 2002; Lill, 2012). Research on Grx5 

homologues in S. pombe and A. thaliana support this, as these proteins are also involved 

in Fe-S assembly as scaffold proteins (Bandyopadhyay et al, 2008a; Kim KD et al, 2010). 
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Glutaredoxins in the chloroplasts and mitochondria of A. thaliana are known to 

interact with BolA proteins in the same compartments (Couturier et al, 2014). We 

wondered if S. cerevisiae Grx5 would also interact with the BolA proteins potentially found 

in the mitochondria. Figure 4.1 shows a schematic of the domain structures of Grx5 and 

the three BolA-like proteins in S. cerevisiae. Fra2 is known to be localized to the cytosol, 

but Yal046c and Yal044w localization is less clear. According to information in the 

Saccharomyces Genome Database, localization could not be determined for either protein. 

Yal046c, or Aim1 (Altered Inheritance of Mitochondria), has a putative mitochondrial 

targeting signal, and is related to mitochondrial function and organization. Yal044w has no 

identified phenotype, but the protein sequence is related to Uvi31+ from S. pombe. Uvi31+ 

is a BolA-like protein implicated in DNA repair (Kim MJ et al, 2002). At this time, no 

other information is known about Aim1 or Yal044w, although we attempted to uncover 

more about these proteins in this study. 

MATERIALS AND METHODS 

Protein purification. Overexpression of Grx5 was performed in the E. coli 

BL21(DE3) strain in LB media at 37 °C with shaking until the A600 = 0.6-0.8. Cells were 

induced with 1 mM isopropyl β-D-thiogalactosidase (IPTG) and grown at 30 °C. Cells 

were collected 18 h after induction and resuspended in 50 mM Tris/MES, pH 8.0, 5 mM 

GSH, followed by sonication and centrifugation to remove cell debris. The cell-free extract 

was loaded into a DEAE anion-exchange column (GE Healthcare) equilibrated with 50 

mM Tris/MES, pH 8.0, 5 mM GSH. Protein was eluted with a linear gradient to 1 M NaCl, 

fractions containing Grx5 as judged by SDS-PAGE were pooled, and Na2SO4 was added 

to a final concentration of 1 M.  The sample was loaded onto a Phenyl Sepharose column  
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Figure 4.1. Domain structures of proteins in this study. From top, the monothiol 

glutaredoxin, Grx5, and the BolA-like proteins, Yal044w-a, Fra2, and Aim1. 
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(GE Healthcare) equilibrated with 50 mM Tris/MES, pH 8.0, 1 M Na2SO4, 100 mM NaCl, 

5 mM GSH. The protein was eluted with a linear gradient to no Na2SO4, and fractions 

containing Grx5 as judged by SDS-PAGE were collected and concentrated. 

Overexpression of Aim1 was performed in the E. coli BL21(DE3) strain in LB 

media at 37 °C with shaking until the A600 = 0.6-0.8. Cells were induced with 1 mM 

isopropyl β-D-thiogalactosidase (IPTG) and grown at 30 °C. Cells were collected 18 h after 

induction and resuspended in 50 mM MES, pH 6.0, followed by sonication and 

centrifugation to remove cell debris. The cell-free extract was loaded onto an SPFF cation-

exchange column (GE Healthcare) equilibrated with 50 mM MES, pH 6.0. Protein was 

eluted with a linear gradient to 1 M NaCl and fractions containing Aim1 as judged by SDS-

PAGE were pooled and concentrated.  The sample was loaded onto a HiLoad Superdex 75 

gel filtration column (GE Healthcare) equilibrated with 50 mM Tris-HCl, pH 8.0, 150 mM 

NaCl. The purest fractions of Aim1 as judged by SDS-PAGE were collected and 

concentrated. 

Overexpression of Yal044w-a was performed in the E. coli BL21(DE3) strain in 

LB media at 37 °C with shaking until the A600 = 0.6-0.8. Cells were induced with 1 mM 

isopropyl β-D-thiogalactosidase (IPTG) and grown at 16 °C. Cells were collected 18 h after 

induction and resuspended in 50 mM Tris-HCl, pH 8.0, followed by sonication and 

centrifugation to remove cell debris. The cell-free extract was loaded into a DEAE anion-

exchange column (GE Healthcare) equilibrated with 50 mM Tris-HCl, pH 8.0. Protein 

mainly eluted in the wash step, so this was collected and dialyzed into 50 mM MES, pH 

6.0 before being loaded onto an SPFF cation-exchange column (GE Healthcare) 

equilibrated with 50 mM MES, pH 6.0. Yal044w-a mainly eluted in the wash step, so this 
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was collected and concentrated. The sample was loaded onto a HiLoad Superdex 75 gel 

filtration column (GE Healthcare) equilibrated with 50 mM Tris-HCl, pH 8.0, 150 mM 

NaCl. The purest fractions of Yal044w-a as judged by SDS-PAGE were collected and 

concentrated. 

Fe-S cluster reconstitutions. Fe-S cluster-bound homodimeric Grx5, and 

heterodimeric Grx5-Aim1 and Grx5-Yal044w were prepared under anaerobic conditions 

using DTT- or GSH-pretreated protein. Reconstitutions involved incubating apo proteins 

with 10-fold excess L-cysteine and ferrous ammonium sulfate in the presence of IscS in 50 

mM Tris-HCl, pH 8.0, 150 mM NaCl for 2 h on ice and purifying with a Q FF column. 

These experiments were performed by Bo Zhang (M. Johnson group; Zhang B, 2013b). 

Gel shift assays. The formation of Aft2-DNA (and Aft1-DNA) complexes 

was identified and quantified using electrophoretic mobility shift assays.  The DNA probe 

consisted of the Aft1/2 binding site within the FET3 promoter (5’- 

ATCTTCAAAAGTGCACCCATTTGCAGGTGC -3’) or the MRS4 promoter (5’- 

TTTCGGTATTTTGGCACCCTTTCTTGAATG -3’) labeled with IRDye700 at the 5’-

end, and its reverse compliment (Integrated DNA Technologies).  Binding reactions were 

prepared in the dark, and consisted of hybridization buffer (20 mM Tris-HCl, pH 7.5, 300 

mM NaCl, 100 mM KCl, 3 mM MgCl2, 5% glycerol, and 4 ng/μl sonicated salmon sperm 

DNA), 200 pM FET3 oligonucleotides, and purified recombinant protein.  Monomeric apo-

Aft2 protein contained 5 mM DTT in the purification buffer.  Dimeric apo-Aft2 protein 

contained no DTT.  [2Fe-2S] Aft2 was prepared by mixing apo-Aft2 monomer with [2Fe-

2S] Grx3-Fra2 (WT or H103C) and incubating on ice for 30 min.  This mixture was then 

applied to desalting and Heparin columns to separate Aft2 from Grx3-Fra2.  The amount 
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of cluster loaded to Aft2 was determined by Bradford assay (Bio-Rad) and UV-visible 

absorption spectroscopy.  [2Fe-2S] cluster-loading on Aft2 from Grx3-Fra2 WT was 

determined to be ~50-60%, and cluster-loading from Grx3-Fra2 H103C was determined to 

be ~40-45%. Monomeric apo-Aft1 protein contained 5 mM DTT in the purification buffer. 

Once Aft1/2 protein was added, reactions were incubated for 20 minutes in the dark.  A 

6% polyacrylamide non-denaturing gel containing Tris-borate (TB) was pre-

electrophoresed in 0.5x TB buffer, pH 8 until the current was stable.  The binding reactions 

were then applied to the equilibrated gel and electrophoresed using TB buffer for 1 h at 80 

V.  All sample preparation, reaction incubations, and electrophoresis was carried out in a 

Coy glovebox (O2 < 5 ppm).  Gels were imaged and quantified using an Odyssey Infrared 

Imaging System (LI-COR). Purification of Aft1 and Aft2 was performed by Haoran Li (Li 

H, 2011b; Poor et al, 2014). 

Strains and growth conditions. S. cerevisiae stains used in this study are 

listed in Table 4.1. Under nonselective conditions, cells were grown on YPD medium 

(yeast extract, peptone, and 2% glucose). Synthetic defined (SD) medium was used for 

selective conditions. 

Plate growth assays. Strains were grown in YPD media overnight at 30 °C. The 

OD of these strains was obtained, and all were normalized to an OD of 2.0 using sterile 

water. Serial dilutions to ODs of 0.2 and 0.02 were made, and 5 µL of each of these 

dilutions was spotted onto plates in sequence. YPD plates alone or with 2 mM H2O2, 100 

µM BPS, or 100 µM Fe(II) were grown anaerobically and aerobically in parallel at 30 °C 

for 36 hours. YPD and YPG (3% glycerol) plates alone or with 100 µM BPS were grown 

in parallel anaerobically at 30 °C, and were examined after 24 and 48 hours. 
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Table 4.1. Strains used in this study 

 

 

   

Strain Genotype Source 

BY4741 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 Research Genetics 

fra2Δ 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

fra2::kanMX 
Research Genetics 

yal046cΔ 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

yal046c::URA3 
This study 

yal044wΔ 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

yal044w::HIS3 
This study 

yal044wΔ:yal046cΔ 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

yal044w::kanMX yal046c::URA3 
This study 

fra2Δ:yal046cΔ 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

fra2::kanMX yal046c::URA3 
This study 

fra2Δ:yal044wΔ 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

fra2::kanMX yal044w::HIS3 
This study 

fra2Δ:yal046cΔ: 

yal044wΔ 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

fra2::kanMX yal046c::URA3 

yal044w::HIS3 

This study 

sod1Δ 
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

sod1::kanMX 
Research Genetics 
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Aconitase assay. Strains were grown in 10 mL of YPD media with or without 

100 µM Fe(II) at 30 °C until stationary phase. Cells were harvested and washed with sterile 

water before being resuspended in ice-cold lysis buffer (50 mM K-Phos, pH 7.4, 1:100 

PMSF, 250 µL lysis buffer for every 150 µL of cell pellet). A volume of glass beads equal 

to the pellet volume was added, and cells were vortexed at 4 °C for 4 minutes. Extracts 

were spun down at 13k rpm for 10 minutes twice, and protein concentrations were assayed 

using the Bradford method (Bio-Rad). Aconitase assay buffer was prepared fresh at room 

temperature (50 mM Tris-HCl, pH 7.4, 100 mM NaCl, 0.5 mM cis-aconitate). Aconitase 

activity was assayed in 500 µL of assay buffer with 75 µg protein extract by monitoring 

the change in absorbance at 240 nm at 15 second intervals for a total of three minutes. 

Activity was calculated using Eq. 4.1, where 4.88 mM-1 cm-1 is the extinction coefficient 

of cis-aconitate at 240 nm, and one unit of enzyme activity is 1 nmol cis-aconitate 

converted per minute per mg of protein. 

 Aconitase activity = 
rate (dA

min⁄ )∗rxn mix vol (µL)

4.88 mM−1∙cm−1∗0.075 mg
 nmol/min/mg (4.1) 

Succinate dehydrogenase assay. Strains were grown in SD media at 30 °C to 

exponential phase and mitochondria were isolated as previously described (Outten and 

Culotta, 2004). Succinate dehydrogenase (SDH) buffer was prepared fresh and kept on ice 

(50 mM Hepes, pH 7.4, 0.1 mM EDTA, 1 mM KCN, 100 µM phenazine methosulfate, 50 

µM dichloroindophenol, 20 mM succinate). SDH activity was assayed in 1 mL of assay 

buffer with 10 µg of mitochondrial extract. Once extracts were added to the buffer, the 

mixture was incubated one minute before monitoring the change in absorbance at 600 nm 

at 15 second intervals for a total of three minutes. Activity was calculated using Eq. 4.2, 

where 21 mM-1 cm-1 is the extinction coefficient of dichloroindophenol at 600 nm, and one 



www.manaraa.com

156 
 

unit of enzyme activity is 1 nmol dichloroindophenol converted per minute per mg of 

protein. 

 SDH activity = −
rate (dA

min⁄ )∗rxn mix vol (µL)

21 mM−1∙cm−1∗0.01 mg
 nmol/min/mg  (4.2) 

β-galactosidase assay. WT and single knock-out strains were transformed 

with pDW840 or pDW841 plasmid (gifts from Dr. Dennis Winge’s lab expressing lacZ 

under the control of the FET3 promoter with a functional or non-functional iron-responsive 

element, respectively) (Rutherford et al, 2003). Strains were grown in SD media at 30 °C 

to an OD of 1 and were divided into 3-mL aliquots for induction. The cultures were 

restarted with an OD ~0.25 and were incubated with either 50 μM FeCl3 (high Fe), 100 μM 

BPS (low Fe), or no addition (normal Fe) for 5 hours (final OD ~1). Cells were harvested 

and washed with cold Z buffer (60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 1 mM 

MgSO4, 50 mM β-mercaptoethanol), then resuspended in 200 μl of Z buffer with 10 μl of 

100 mM PMSF and 100 μl of glass beads (Sigma).  Cells were lysed with two 2-minute 

cycles in a Mini-Beadbeater, extracts were centrifuged (13k rpm, 10 min) and the 

supernatants were collected for assaying.  Extract dilutions were made with Z buffer.  The 

protein concentration of the extracts was determined by the Bradford method (Bio-rad).  

The assay was carried out in 1-ml polystyrene cuvettes (VWR), where each 1 mL reaction 

contained Z buffer with 0.7 mg/ml o-nitrophenyl β-D-galactopyranoside (ONPG) and cell 

extract.  Reactions were incubated at 30 °C until a faint yellow color appeared, then 300 μl 

of 1 M Na2CO3 was added to stop the reaction and the reaction time was documented (min). 

The absorbance at 420 nm was recorded, and β-galactosidase activity using Eq. 4.3, where 

1.3 corrects for the reaction volume and 0.0045 is the OD of a 1 nmol/ml solution of ONPG, 

with units of nmol ONPG converted per min per mg protein. 
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β-galactosidase Activity = 
A420∗1.3

0.0045∗extract (mL)∗[protein](
mg

mL
)∗time

 (4.3) 

GSH assay. Total glutathione (GSH + GSSG) and oxidized glutathione (GSSG) 

were measured using the DTNB-glutathione reductase recycling assay on mitochondrial 

and post-mitochondrial supernatant (PMS) cellular fractions (Outten and Culotta, 2004). 

RESULTS AND DISCUSSION 

Grx5 can be reconstituted with an Fe-S cluster alone or with Aim1 or Yal044w. 

Monothiol glutaredoxins are known to act as Fe-S cluster transfer proteins, thus they do 

not always overexpress loaded with cluster (Zhang B et al, 2013a). Grx5 purifies as an apo 

monomer, therefore a reconstitution was performed by collaborators in Mike Johnson’s lab 

at UGA. The type of Fe-S cluster reconstituted on Grx5 varies depending on the conditions. 

Reconstitutions in the presence of GSH result in a linear [3Fe-4S]+ cluster, while the 

presence of DTT gives a [4Fe-4S]2+ cluster (Figure 4.2 and Zhang B et al, 2013a). More 

recent work on the effects of small thiols on cluster transfer may give some insight into 

these differences (Vranish et al, 2014). Both DTT and GSH can act as ligands for Fe-S 

clusters, although DTT binds to oxidized clusters more easily than reduced clusters due to 

its negative property. Thus, it is logical that the types of clusters being assembled and 

loaded to Grx5 is influenced by the thiol present.  

Reconstitution of Grx5 with Aim1 in the presence of GSH results in a bridging 

[2Fe-2S]2+ which is spectroscopically similar to S. cerevisiae Grx3-Fra2 (Figure 4.3A and 

Li H et al, 2009). However, when applied to a Q Sepharose column after reconstitution, 

the cluster degrades to a mixture of [2Fe-2S]2+ and linear [3Fe-4S]+ clusters on Grx5 alone, 

while Aim1 is found in the column flow-through (Figure 4.3A, bottom panel). 

Reconstitution of Grx5 with Yal044w in the presence of GSH gives a mixture of two types  
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Figure 4.2. UV-visible absorption (top panel) and CD spectra (bottom panel) of Grx5. 

Shown in apo Grx5 as-purified (black line), Grx5 reconstituted with GSH (blue line), and 

Grx5 reconstituted with DTT (red line). Work done by B. Zhang, M. K. Johnson lab, UGA. 
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Figure 4.3. Reconstitution of Grx5 with Aim1 (A) and Yal044w (B). (A) Top panel shows 

the CD spectrum of the reconstitution mix of Grx5 and Aim1 before further purification. 

Bottom panel shows the CD spectrum of the purified reconstitution, which is a mixture of 

clusters on Grx5 (black line). The spectra of [3Fe-4S] Grx5 (red line) and [2Fe-2S] Grx3 

(blue line) are shown for comparison. (B) UV-visible absorption (top panels) and CD 

spectra (bottom panels) of the purified reconstitution mixture of Grx5 and Yal044w. The 

two types of resulting clusters are separated as two peaks: 1st fraction, a Grx5-Yal044w 

heterodimer, and 2nd fraction, a Grx5 homodimer (left and right, respectively). Work done 

by B. Zhang, M. K. Johnson lab, UGA. 
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of clusters which are stable enough to be separated with a Q Sepharose column (Figure 

4.3B). Mass spectrometry shows the first cluster to come off the column is a heterodimer 

of Grx5 and Yal044w, while the second cluster is a Grx5 homodimer. Taken together, this 

data shows that Grx5 can physically interact with both Aim1 and Yal044w. Grx5 can also 

bind multiple types of Fe-S clusters alone, or with the BolA-like proteins. Differences in 

nature and stability of these clusters may be due to their different roles in the cell. 

Interaction with the Grx3-Fra2 complex reduces Aft2 DNA binding affinity. Aft1 

and Aft2 are transcription factors that control the iron regulon, responsible for iron uptake 

and utilization. They bind to a consensus sequence in the promoter region of target genes 

called the iron-responsive element (FeRE) which contains CACCC (Rutherford et al, 

2003). Aft1/2 activity is controlled by interacting with the [2Fe-2S] Grx3-Fra2 complex. 

This interaction induces dimerization of Aft1/2, which then prevents binding to the FeRE 

(Li H et al, 2011a). The DNA-binding affinity of different forms of Aft2 was determined 

to confirm this model using the promoter region of FET3 (Table 4.2 and Poor et al, 2014). 

The monomeric form of Aft2 has a binding affinity of 26 nM for the FET3 promoter. The 

O2-oxidized dimeric form of Aft2 has 2.8-fold weaker binding affinity (72 nM), indicating 

that Aft2 dimerization can reduce DNA-binding ability as expected (Figure 4.4). [2Fe-2S] 

transfer from Grx3-Fra2 to Aft2 causes at least a 3.3-fold reduction in DNA-binding 

affinity; the DNA dissociation constant was changed to 85 nM for Aft2 with 0.5–0.6 [2Fe-

2S] cluster bound per dimer (Figure 4.5). The difference is expected to be larger with fully 

loaded Aft2. Thus, both O2- and Fe-S-induced dimerization of Aft2 interferes with its 

DNA-binding ability. However, Fe-S cluster transfer from Grx3-Fra2 (H103C) to Aft2 

does not significantly alter the DNA-binding, confirming that Fra2 H103 is required for  
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Table 4.2. Aft2 titration results 

 

Target Aft2 Form K
d 

(nM) Slope 

FET3 

Apo WT monomer 26.1 ± 3.3 1.9 ± 0.2 

Apo WT dimer 71.9 ± 0.7 1.9 ± 0.1 

Apo C187A (monomer) 32.4 ± 3.0 1.5 ± 0.1 

Apo C189A (monomer) 23.4 ± 1.2 1.5 ± 0.04 

Apo C187A/C189A (monomer) 23.4 ± 4.4 1.4 ± 0.1 

Fe-S from Grx3-Fra2 WT 85.2 ± 2.1 1.8 ± 0.1 

Fe-S from Grx3-Fra2 H103C 36.0 ± 1.1 1.7 ± 0.1 

MRS4 
Apo WT monomer 16.2 ± 0.1 1.4 ± 0.03 

Fe-S from WT 16.2 ± 0.6 2.4 ± 0.03 
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Figure 4.4. EMSAs of apo Aft2 with FET3.  
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Figure 4.5. EMSAs of [2Fe-2S] Aft2 with FET3. 
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inactivation of Aft2. Furthermore, we confirmed that substitution of one or both Cys in the 

CDC motif with Ala does not significantly alter the DNA-binding affinity (Figure 4.4 and 

Table 4.2), which is consistent with the monomeric structure in vitro and constitutive 

activity of these mutant forms in vivo. The slope of the binding curve for all of the 

interactions tested were between 1.4-1.9, indicating positive cooperativity in the 

interaction. 

Aft2 DNA-binding affinity was also tested using the MRS4 promoter. Monomeric 

apo-Aft2 has a binding affinity of 16 nM (Figure 4.6). However, [2Fe-2S] cluster transfer 

from Grx3-Fra2 to Aft2 does not alter DNA-binding affinity. MRS4 is a more specific 

target of Aft2 than FET3, which explains the increased affinity for this promoter. This may 

also explain why Fe-S-induced dimerization does not decrease Aft2 affinity for the 

promoter. Since the interaction is so strong, Aft2 may need to be more than 50% loaded 

with cluster in order to affect the DNA-binding affinity. 

Additionally, the DNA-binding affinity of Aft1 to FET3 was tested briefly (Figure 

4.7). A dissociation constant was not determined for this interaction. However, increasing 

amounts of Aft1 leads to a double shift of the DNA. In this case, Aft1 may oligomerize on 

the DNA when functioning as a transcription factor. 

Fra2 mutants have a respiratory defect. To determine if the BolA-like 

proteins in S. cerevisiae have iron or oxygen-related phenotypes, we made single, double, 

and triple knockouts of Fra2, Aim, and Yal044w and performed spots tests. Under both 

aerobic and anaerobic growth conditions, none of the knockouts showed oxidative stress 

or iron-linked phenotypes (Figure 4.8). However, on glycerol, all of the fra2Δ mutants had 

poor to no growth, suggesting a respiratory defect (Figure 4.9). This defect was not seen in  
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Figure 4.6. EMSAs of Aft2 with MRS4. 
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Figure 4.7. EMSA of Aft1 with FET3 
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Figure 4.8. Spot tests of knockouts grown on YPD in the presence (aerobic, top) or absence 

of oxygen (anaerobic, bottom). To simulate different stresses, chemicals were added to the 

media: H2O2 (oxidative stress), BPS (Fe deplete), or iron (Fe overload). 
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Figure 4.9. Spot tests of knockouts grown on YPD (top) compared to YPG (bottom). The 

two left panels show growth on media without BPS after 24 and 48 hours. The two right 

panels show growth on media with BPS added after 24 and 48 hours. 
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any of the knockouts which still contained Fra2, nor was it exacerbated with additional 

knockouts (single vs double and triple knockouts). Since defects in iron regulatory proteins 

were previously shown to accumulate high amounts of iron, the respiratory defect may be 

due to iron overload causing oxidative stress (Dlouhy et al, 2013). In order to test this, the 

fra2Δ mutants were grown on YPG with BPS, an iron chelator. Depleting bioavailable iron 

did not rescue the respiratory defect, suggesting it is not iron-related. 

Iron regulation is dysfunctional in fra2 mutants. We further tested the BolA 

mutants for iron and glutathione metabolism defects. Mitochondrial Fe-S cluster synthesis 

can be monitored by measuring aconitase and succinate dehydrogenase (SDH) activities. 

SDH activity was assayed on several different occasions with varying results (Figure 

4.10A). Overall, there did not appear to be any defects in SDH activity for the BolA 

mutants. Aconitase activity was diminished or abolished in all of the fra2Δ single, double, 

and triple mutants, while the aim1Δ and yal044wΔ mutants had activity levels similar to 

WT (Figure 4.10B). A fra1Δ mutant was also tested and found to have aconitase activity 

around half of the WT levels. None of these defects were rescued with addition of iron to 

the growth media. Since aconitase is involved in the citric acid cycle, this reinforces the 

idea that Fra2 is involved cell respiration. 

To determine in the single BolA knockouts if iron regulation was functional, we 

performed a β-galactosidase activity assay using the FET3 promoter. Transcriptional 

regulation of Fet3 is controlled by the transcription factors Aft1 and Aft2, which are general 

regulators of proteins involved in iron homeostasis. Thus, testing transcription of FET3 is 

a way to determine if regulation by Aft1/2 is normal. When cells are grown under high or 

normal iron conditions, β-galactosidase activity should be low, while cells grown under  
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Figure 4.10. SDH (A), aconitase (B), and β-galactosidase (C) activity assays on knockouts. 

(A) The two graphs show SDH activities measured on two separate days. (B) Aconitase 

activity of WT and knockouts grown without (blue bars) and with Fe (red bars) added to 

the growth media. (C) β-galactosidase activity of the FET3 promoter in WT and single 

knockouts grown under high (red bars), normal (green bars), and low Fe (blue bars) 

conditions. WT (mut) uses a mutated FET3 promoter (central CCC mutated to GGG) as a 

negative control. 
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low iron should have high β-galactosidase activity. This pattern of activity was seen in WT 

as well as yal046cΔ and yal044wΔ cells (Figure 4.10C). Only fra2Δ had dysfunctional 

regulation, which was found previously (Kumánovics et al, 2008).  

To assess glutathione metabolism, we measured the ratio of GSH to GSSG in the 

cytosol and mitochondria of BolA knockouts. Higher GSH/GSSG ratios were found in the 

cytosol of fra2Δ double and triple mutants, while the mitochondria have lower GSH/GSSG 

ratios (Figure 4.11). This data suggests that fra2Δ mutants have a respiratory defect 

unrelated to Aim1 and Yal044w. Taken together, these results reconfirm that only Fra2 

functions in iron metabolism, while the roles of Aim1 and Yal044w are still unclear. 

CONCLUSIONS 

This work reaffirms the physical interactions between monothiol glutaredoxins and 

BolA-like proteins. Grx5, found in the mitochondria, has been shown previously to be 

intricately involved in iron regulation in yeast (Rodríguez-Manzaneque et al, 2002; Chung 

et al, 2005; Kim KD et al, 2010). Grx5 bind several different types of clusters in vitro, 

including [4Fe-4S] and linear [3Fe-4S] clusters (Zhang B et al, 2013a). Here, we have 

shown that Grx5 can also form a bridging Fe-S cluster with two BolA-like proteins, Aim1 

and Yal044w, which may be found in the mitochondria. The Grx5-Aim1 cluster is unstable, 

and degrades to a mixture of clusters on Grx5 alone. On the other hand, the Grx5-Yal044w 

cluster seems to be relatively stable as it stays intact through a secondary purification step. 

If these proteins also interact and bind Fe-S cluster in vivo, the differences in the complexes 

may indicate distinct functions. Similar to the Grxs and BolA proteins in E. coli and the 

cytosol of S. cerevisiae, Aim1 and Yal044w may bind to Grx5 to tailor it for some other 

role. In vivo research has thoroughly explored the function of the cytosolic monothiol gluta- 
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Figure 4.11. GSH assays on knockouts. Top left panel shows total glutathione 

(GSH+GSSG), top right panel shows total GSSG. Middle panels show % oxidized GSSG 

in the cytosol (PMS, post-mitochondrial supernatant) and mitochondria. Bottom panels 

show the ratio of GSH/GSSG in the cytosol (PMS) and mitochondria.  
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redoxins, Grx3/4, and the BolA-like protein, Fra2 on the regulation of the iron-responsive 

transcription factors Aft1 and Aft2 (Ojeda et al, 2006; Kumánovics et al, 2008; Li H et al, 

2011a). Further in vitro work with these proteins established a physical interaction and 

specific Fe-S cluster transfer from Grx3/4-Fra2 to Aft2 (Li H et al, 2011a). The best way 

to test how this affects Aft2 activity is by looking at changes in the DNA-binding affinity 

(Poor et al, 2014 and this work). Here we demonstrated that Aft2 DNA-binding affinity to 

the FET3 promoter is diminished by dimerization and Fe-S cluster binding. However, only 

clusters transferred from the WT form of Grx3-Fra2 will cause this change, clusters 

transferred from a Grx3-Fra2 (H103C) mutant do not significantly inactivate Aft2. 

Mutations in the conserved cysteines (C187 and C189) of Aft2 do not significantly affect 

DNA-binding, reinforcing the concept that Aft2 is inactivated by interaction with [2Fe-2S] 

Grx3-Fra2. While some initial work done on Aft2-MRS4 and Aft1-FET3 show significant 

DNA-binding, these interactions need to be better characterized before any conclusions 

can be drawn. 

BolA proteins in eukaryotes have a well-established role in iron regulation 

(Kumánovics et al, 2008; Couturier et al, 2009; Shukla et al, 2012). S. cerevisiae Fra2 is 

required for functional regulation of iron uptake and distribution. It is plausible that the 

two other BolA proteins in S. cerevisiae, Aim1 and Yal044w, would also have a role in 

iron homeostasis. However, this study failed to establish any iron- or oxidative stress-

related phenotype to for those proteins. Instead, the link between Fra2, cellular respiration, 

and iron regulation was reiterated. Overall, this work confirms the conserved roles of 

monothiol Grxs and BolA-like proteins in iron homeostasis, both in vitro and in vivo. 
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CHAPTER 5 

THE SULFHYDRYL OXIDASE ERV1 DOES NOT HAVE A DIRECT ROLE IN 

CYTOSOLIC FE-S CLUSTER PROTEIN MATURATION AND IRON REGULATION 

 

ABSTRACT 

Erv1 is a sulfhydryl oxidase that partners with the import receptor Mia40 to import 

small cysteine-rich proteins into the mitochondrial intermembrane space. In 

Saccharomyces cerevisiae, Erv1 has also been implicated in maturation of cytosolic Fe-S 

cluster proteins and regulation of iron homeostasis via an unknown mechanism. However, 

these studies were performed on a single erv1 mutant strain, erv1-1, that we discovered has 

additional defects in glutathione (GSH) metabolism. To investigate the Erv1-dependent 

connection between GSH metabolism and iron homeostasis, we measured GSH levels, Fe-

S protein activity, and iron regulation in a variety of erv1 and mia40 mutants. Measurement 

of total GSH in the erv1 and mia40 mutants demonstrated that only the erv1-1 strain has 

significantly reduced GSH levels. We determined that the cause of GSH depletion in the 

erv1-1 strain is an additional mutation in the gene encoding the glutathione biosynthesis 

enzyme glutamate cysteine ligase (Gsh1) that likely compromises Gsh1 protein folding 

and/or stability. To address whether Erv1 or Mia40 play a direct role in iron regulation, we 

measured iron-dependent expression of Aft1/2-regulated genes and mitochondrial iron 

accumulation in erv1 and mia40 strains and mitochondrial iron accumulation. The only 

strain to exhibit iron misregulation is the GSH-deficient erv1-1 strain, which could be 
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rescued with addition of GSH. Similarly, erv1-1 exhibited some defects in the activity of 

cytosolic Fe-S cluster proteins, while other erv1 or mia40 did not. Together, these results 

suggest that the Fe-S cluster-related defects first reported in the erv1-1 strain is due to a 

previously unrecognized mutation in the GSH1 gene of this strain, rather than indicating a 

direct role for Erv1 or Mia40 in cytosolic Fe-S cluster maturation and iron regulation. 

INTRODUCTION  

Erv1 is an FAD-dependent sulfhydryl oxidase that is localized to the mitochondrial 

intermembrane space (IMS). Erv1 has an essential, well-established role in importing 

small, cysteine-containing proteins into the IMS via a disulfide relay with the import 

receptor Mia40 (Herrmann and Reimer, 2012; Sideris and Tokatlidis, 2010) The substrate 

proteins of this disulfide relay system enter the IMS in an unfolded and reduced state, where 

Mia40 catalyzes oxidation of cysteine pairs in the imported substrate proteins that 

facilitates their folding and retention in the IMS (Chacinska et al, 2004; Mesecke et al, 

2005). Erv1 catalyzes reoxidation of Mia40 and shuttles the electrons to the respiratory 

chain (Allen et al, 2005; Bihlmaier et al, 2007). The substrate proteins of the Mia40-Erv1 

pathway play critical roles in mitochondrial protein import, assembly of respiratory chain 

components, and removal of reactive oxygen species. As such, defects in Mia40 or Erv1 

lead to depletion of these IMS proteins causing a variety of phenotypes, including 

respiratory deficiency, loss of mitochondrial DNA, and aberrant mitochondrial 

morphology. The importance of this pathway is highlighted by the fact that yeast deletion 

mutants for ERV1 and MIA40 are inviable (Herrmann and Köhl, 2007). 

In addition to participating in IMS protein import, Erv1 is suggested to have another 

role in exporting a sulfur-containing compound from the mitochondrion to the cytosol that 
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is required for maturation of cytosolic Fe-S cluster proteins and regulation of iron 

homeostasis (Lange et al, 2001; Lill, 2012). The mitochondrion houses the iron-sulfur 

cluster (ISC) pathway for Fe-S cluster assembly, which is required not only for the 

biogenesis of Fe-S containing proteins in the mitochondria, but also for cytosolic and 

nuclear Fe-S proteins (Lill, 2012).  The maturation of most Fe-S proteins in the cytosol and 

nucleus relies on the CIA (cytosolic iron-sulfur protein assembly) machinery (Netz et al, 

2014). The connection between the ISC and CIA assembly pathways occurs via the export 

of a sulfur-containing compound from the mitochondrial matrix to the cytosol that is used 

to build and/or insert Fe-S clusters into cytosolic proteins.  This compound is a product of 

the ISC pathway and is exported by the ATP binding cassette transporter Atm1 (Kispal et 

al, 1999). The substrate for Atm1 was recently identified as glutathione polysulfide (GS-

S-SG), suggesting that the thiol-containing tripeptide glutathione (GSH) helps transport an 

activated persulfide (S0) from the mitochondria to the cytosol for Fe-S cluster assembly 

(Schaedler et al, 2014).  This finding is supported by the recent crystal structures of yeast 

Atm1 and its bacterial homologue with bound GSH and/or GSSG (Srinivasan et al, 2014; 

Lee et al, 2014). The ISC pathway, Atm1, and GSH also have a direct impact on iron 

regulation in yeast since iron sensing by the transcriptional regulators Aft1 and Aft2 is 

dependent on mitochondrial Fe-S cluster biogenesis, GSH, and Atm1 function (Rutherford 

et al, 2005; Outten and Albetel, 2013; Kumar et al, 2011). In the proposed model for this 

iron signaling pathway, the exported Atm1 substrate is used to assemble Fe-S clusters on 

the cytosolic glutaredoxins Grx3 and Grx4, which use GSH to coordinate the Fe-S clusters 

and help deliver them to Aft1 and Aft2.  Fe-S cluster binding by Aft1 and Aft2, in turn, 
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inhibits their ability to bind to and activate iron uptake and mobilization genes (Poor et al, 

2014; Ueta et al, 2012) 

Erv1’s putative role in this regulation pathway and in the maturation of cytosolic 

Fe-S cluster proteins stems primarily from a single report in which a temperature-sensitive 

erv1 mutant strain (erv1-1) displayed Fe-S related phenotypes similar to strains depleted 

of GSH or Atm1 (Lange et al, 2001). These phenotypes included reduced Fe incorporation 

into cytosolic Fe-S proteins, accumulation of mitochondrial Fe, and dysregulation of Fe 

homeostasis (Rutherford et al, 2005; Sipos et al, 2002; Miao et al, 2009). Taken together, 

these results suggested that Erv1 functions with Atm1 and GSH to export the ISC-derived 

substrate (GS-S-SG) required for cytosolic Fe-S cluster assembly and iron sensing (Lill, 

2012). 

Since Erv1’s specific roles in cytosolic Fe-S cluster biogenesis and iron metabolism 

were unclear, we sought to address this issue via analysis of GSH metabolism, Fe-S cluster 

protein activity, and iron regulation in a variety of erv1 mutant strains. Furthermore, we 

extended these studies to include mia40 mutant strains since Mia40’s potential role in these 

pathways had not previously been addressed. Surprisingly, we discovered that the erv1-1 

strain originally tested for Fe-S cluster defects by Lange and coworkers (Lange et al, 2001) 

has dramatically reduced GSH levels in both the mitochondria and cytosol. In contrast, the 

other erv1 and mia40 mutants tested did not exhibit this phenotype. We hypothesized that 

GSH deficiency in the erv1-1 mutant is the underlying cause for the cytosolic Fe-S cluster 

defects and iron misregulation reported for this strain. We tested this hypothesis by 

monitoring the activity of cytosolic and mitochondrial Fe-S proteins, gauging the 

expression of the iron regulon genes FET3 and FIT3, and measuring mitochondrial and 
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cytosolic iron levels in erv1 and mia40 mutants. Iron regulation was only impaired in the 

GSH-deficient erv1-1 strain and was rescued with GSH addition to the growth media. 

Additionally, erv1 and mia40 mutant strains did not show any significant changes in the 

activity of mitochondrial and cytosolic Fe-S cluster-containing proteins, and only the erv1-

1 strain accumulated a significant amount of mitochondrial iron compared to the WT 

control. These results demonstrate that the defects in cytosolic Fe-S proteins and iron 

homeostasis in erv1-1 are due to GSH depletion.  We further demonstrate that the direct 

cause of GSH deficiency in the erv1-1 strain is a mutation in the GSH1 gene encoding 

glutamate cysteine ligase. Taken together, these results indicate that neither Erv1 nor 

Mia40 play significant roles in cytosolic Fe-S cluster assembly and iron homeostasis. 

MATERIALS AND METHODS 

Strains and Growth Conditions. S. cerevisiae stains used in this study are 

listed in Table 5.1. Temperature-sensitive strains were grown at 24 ºC on synthetic 

complete (SC) medium supplemented with 2% glucose and the appropriate amino acids. 

The GalL-ERV1 strain was maintained at 30 °C on SC medium in the presence of 2% 

raffinose + 0.5% galactose to induce ERV1 expression or 2% raffinose to repress 

expression. For plasmid shuffling, an erv1 deletion strain with wild-type Erv1 expressed 

on a URA3 plasmid (Spore 2A) was transformed with a TRP1 plasmid carrying 

Erv1(F124S) (pYX232-erv1(F124S) described below). Transformants were selected on 

SC-Trp plates and shuffling of the URA3-marked plasmid expressing WT Erv1 was carried 

out with 5-fluoroorotic acid by Rabindra Behera (C. Outten group, unpublished).  Yeast 

transformations were performed by the lithium acetate procedure.  
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Table 5.1. Strains used in this study. 

 

Strain Genotype Reference 

JRY-675 MATa, ∆leu2, ura3-52, his4-519 
Lisowsky, 

1992 

erv1-1 

(pet492-6A) 
MATa, ∆leu2, ura3-52, pet492ts 

Lisowsky, 

1992 

YPH499 
MATa, ade2-101, his3-∆200, leu2-∆1, ura3-52, trp1-

∆63, lys2-801 

Sikorski and 

Hieter, 1989 

erv1-2 
MATa, ade2-101, his3-∆200, leu2-∆1, ura3-52, trp1-

∆63, lys2-801, erv1∷ADE2 [pFL39-erv1-2] 

Rissler et al, 

2005 

erv1-5 
MATa, ade2-101, his3-∆200, leu2-∆1, ura3-52, trp1-

∆63, lys2-801, erv1∷ADE2 [pFL39-erv1-C159S] 

Müller et al, 

2008  

mia40-3 
MATa, ade2-101, his3- ∆200, leu2-∆1, ura3-52, 

trp1-∆63, lys2-801, mia40∷ADE2 [pFL39-mia40-3] 

Chacinska et 

al, 2004 

mia40-4 
MATa, ade2-101, his3-∆200, leu2-∆1, ura3-52, trp1-

∆63, lys2-801, mia40∷ADE2 [pFL39-mia40-4] 

Chacinska et 

al, 2004 

W303A 
MATa, ade2-1, his3-11,15, leu2-3,112, trp1-1, ura3-

1, can1-100  
  

GALL-ERV1 
MATa, ade2-1, his3-11,15, leu2-3,112, trp1-1, ura3-

1, can1-100, pERV1∷GALL-natNT2 

R. Lill, 

unpublished 

GAL-ATM1 
MATa, ade2-1, his3-11,15, leu2-3,112, trp1-1, ura3-

1, can1-100, pATM1∷GAL10-LEU2 

Kispal et al, 

1999 

Spore 2A 

(W303) 

MATa, ade2-1, his3-11,15, leu2-3,112, trp1-1, ura3-

1, can1-100 erv1::HIS3 [pERV1(URA3)] 

Bien et al, 

2010 

W303-ERV1 
MATa, ade2-1, his3-11,15, leu2-3,112, trp1-1, ura3-

1, can1-100 erv1::HIS3 [pYX232-ERV1] 
This study 

W303-

erv1(F124S) 

MATa, ade2-1, his3-11,15, leu2-3,112, trp1-1, ura3-

1, can1-100 erv1::HIS3 [pYX232-erv1(F124S)] 
This study 
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Construction of Plasmids—The 2µ TRP1 plasmid pYX232-erv1(F124S) was 

generated by Rabindra Behera (C. Outten group, unpublished) by site-directed mutagenesis 

of pYX232-ERV1 (Bien et al, 2010) using the QuikChange II Mutagenesis kit (Agilent). 

The plasmid sequence was verified by DNA sequencing.  

Subcellular Fractionation. Yeast cells were grown aerobically to mid-log phase 

in selecting SC medium. Mitochondrial and post-mitochondrial supernatant (PMS) 

fractions were obtained as previously described by converting cells to spheroplasts and 

subsequently gentle lysis via homogenization and differential centrifugation (Daum et al, 

1982). Incubation with dithiothreitol (DTT) was omitted from the spheroplasting step to 

avoid perturbation of the intracellular thiol redox state. Protein concentrations in extracts 

were determined using the Bradford method (Bio-Rad) with bovine serum albumin as the 

calibration standard. 

Glutathione Assay. Total glutathione (GSH + GSSG) in PMS and mitochondrial 

extracts was measured by the DTNB-GSSG reductase recycling assay as described 

previously (Outten and Culotta, 2004) or the GSH/GSSG-Glo™ Assay following the 

manufacturer’s protocol with slight modifications (Promega). For whole cell GSH 

measurements, 1-4×105 cells (or 0.5-1×107 for erv1-1 strains) were harvested by 

centrifugation, resuspended in lysis buffer supplied by the GSH/GSSG-Glo™ Assay kit, 

and lysed via mechanical disruption with glass beads. After addition of luciferin generation 

and detection reagents, stable luciferin luminescent signals were detected using the 

Synergy H1 Hybrid Multi-Mode Microplate Reader (Biotek, USA). The results are 

expressed as nmoles GSH per 107 cells (assuming 1 OD = 2×107 cells).  These experiments 

were performed by Hatice Ozer (C. Outten group, unpublished). 
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In-Gel Aconitase Activity Assay. Cytosolic and mitochondrial aconitase 

activities were monitored using an in-gel aconitase activity assay described previously 

(Tong and Rouault, Cell Metab 2006). Yeast cells expressing human cytosolic aconitase 

IRP1 (pRS425-IRP1) were grown to mid-log phase in SC glucose media, harvested, and 

washed with sterile water. The pellets were then resuspended in lysis buffer (50 mM Tris-

HCl, pH 8.0, 10% glycerol, 50 mM NaCl, 2.5% Triton X-100, 0.5 mM PMSF, 1 mM DTT, 

2 mM citrate, protease inhibitor cocktail, 200 U/ml catalase) and subjected to glass bead 

lysis. Extracts were centrifuged and the supernatants were collected for assaying. Protein 

concentration of the extracts was determined by the Bradford method (Bio-Rad). A chilled 

8% Tris-borate-citrate polyacrylamide gel was pre-electrophoresed in Tris-glycine-citrate 

running buffer at 140 V for 40 min.  Subsequently, 100 μg of protein was loaded to the gel 

and electrophoresed at 140 V for 3.5 hours on ice. Gels were incubated at 37 °C for 30 min 

in the dark with aconitase activity assay stain (100 mM Tris-HCl, pH 8.0, 1 mM NADP+, 

2.5 mM cis-aconitate, 5 mM MgCl2, 1.2 mM MTT, 0.3 mM phenazine methosulfate, and 

5 U/ml isocitrate dehydrogenase) and scanned. 

Immunoblotting Techniques. Cytosolic and mitochondrial fractions were 

monitored by anti-phosphoglycerate kinase (PGK1) and anti-porin antibodies (Invitrogen), 

respectively, using a secondary anti-mouse IgG (IRDye, LI-COR, Lincoln, NE).  Western 

blots were visualized and quantified using an Odyssey Infrared Imaging System (LI-COR).  

β-galactosidase Assay. All strains tested were transformed with the FET3-

lacZ reporter construct pFC-W that contains the FET3 iron-response element in a minimal 

promoter (Yamaguchi-Iwai et al, 1996) or the FIT3-LacZ reporter construct pFIT3-LacZ 

that contains the FIT3 promoter (Rutherford et al, 2003). Temperature-sensitive erv1, 
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mia40, and corresponding parent strains were grown in selecting SC media at 24 °C to an 

OD600 of 1 and then divided into 3-ml aliquots for induction. The cultures were incubated 

at 24 and 37 °C with either 50 μM FeCl3 (high Fe), 100 μM bathophenanthroline 

disulfonate (BPS) (low Fe), or no addition (normal Fe) for 5 hours. GAL-ERV1 and parent 

W303A strains were grown for 64 hours at 30 °C to an OD600 of 1 in inducing (SC-

raffinose/galactose) or repressing (SC-raffinose) media and were divided similarly into 

high, low, and normal Fe aliquots and grown for an additional 4 hours at 30 °C.  Cells were 

then harvested and assayed for β-galactosidase activity as previously described 

(Thorvaldsen et al, 1993). 

Intracellular Iron Analysis. Mitochondrial and cytosolic iron content was 

measured using atomic absorption spectroscopy. Yeast cells were grown mid-log phase in 

SC-glucose media for temperature-sensitive strains, or SC-galactose/raffinose for W303A 

and GAL-ERV1 strains, and mitochondria and PMS fractions were prepared as previously 

described above. Protein content was assayed using the Bradford method (Bio-Rad), and 

extracts were diluted in MilliQ water. Iron standards were prepared in MilliQ water. Iron 

analysis of fractions was performed on a PerkinElmer PinAAcle 900T graphite furnace 

atomic absorption spectrometer using the manufacturer’s recommended conditions. 

Data Analysis. For all assays and quantifications, averages and standard deviations 

were calculated from at least three independent experiments. 

RESULTS AND DISCUSSION 

GSH levels are severely depleted in the erv1-1 mutant due to a mutation in the 

GSH1 gene. To determine whether Erv1’s role in cytosolic Fe-S cluster maturation is 

directly linked to GSH metabolism, we measured GSH levels in erv1 and mia40 mutant 
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strains. Initially we tested a temperature-sensitive erv1 strain (pet492-6A), herein named 

erv1-1, first described by Lisowsky (Lisowsky et al, 1992; Lisowsky et al, 1994), and 

shown to exhibit defects in IMS protein import (Mesecke et al, 2005) and maturation of 

cytosolic Fe-S clusters (Lange et al, 2001). This strain harbors a F124S mutation located 

at the dimer interface (Guo et al, 2012) and therefore likely impairs Erv1 dimerization, 

which is essential for Erv1 catalytic function (Bien et al, 2010). 

Previous work in our lab showed that GSH levels in the erv1-1 mutant are severely 

depleted in both the cytosol and the mitochondria (Hu, 2010). We sought to retest this strain 

in conjunction with erv1 and mia40 mutants from the YPH499 background. Indeed, the 

erv1-1 strain exhibited barely detectable levels of GSH at both 24 °C and 37 °C (Figure 

5.1A, left), as compared to the WT control.  We further fractionated yeast cells into 

mitochondrial and cytosolic extracts to determine whether the GSH deficiency impacted 

these specific compartments differently. We measured a ~30-fold decrease in cytosolic 

GSH levels in the erv1-1 strain compared to WT at 24 °C that increased to ~120-fold at 37 

°C (Figure 5.1B, left). In the mitochondria, the difference was not as extreme since the 

GSH levels in erv1-1 were ~7-fold lower that WT at 24 °C and ~80-fold lower at 37 °C 

(Figure 5.1C, left).  

In order to test whether the GSH depletion phenotype discovered in the erv1-1 

strain is directly related to the Erv1-Mia40 import system or unique to that specific mutant, 

we measured total GSH levels in additional erv1 and mia40 temperature-sensitive strains 

that were previously shown to be defective in IMS protein import (Chacinska et al, 2004; 

Muller et al, 2008; Rissler et al, 2005). Total GSH levels in whole cell, mitochondrial, and 

cytosolic extracts for these erv1 and mia40 strains were similar to the WT control (Figure  
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Figure 5.1. Total GSH levels in erv1 and mia40 mutants grown to mid-log phase in SC-

glucose media. (A) Whole cell GSH levels, (B) cytosolic GSH levels, (C) mitochondrial 

GSH levels. JRY675 WT and erv1-1 strains are shown in the left panel. YPH499 WT, erv1, 

and mia40 mutants are shown in the right panel. Blue bars show permissive growth (24 

°C), red bars show restrictive growth (37 °C) conditions. Experiments performed by Hatice 

Ozer.  
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5.1A-C, right panels). Taken together, these results demonstrate that GSH deficiency is 

unique to the erv1-1 strain and not a general phenotype of Erv1 or Mia40 dysfunction. 

To uncover the origin of the GSH deficiency in erv1-1, we tested for additional 

defects in the GSH biosynthetic pathway in this strain. The tripeptide GSH (-

glutamylcysteinyl glycine) is synthesized in two steps via glutamate cysteine ligase (Gsh1) 

and GSH synthase (Gsh2). Gsh1 forms the linkage between glutamate and cysteine, while 

Gsh2 catalyzes the addition of glycine. Considering that addition of GSH to cell growth 

rescued the cells’ redox state (Hu, 2010), we hypothesized there may be a mutation in 

GSH1 or GSH2. Sequencing the erv1-1 mutant genome revealed a G to A mutation in the 

coding sequence of GSH1, changing Arg280 to His. Arg280 is located in a well-conserved 

region of GSH1 gene and forms a salt bridge with Asp403 as well as backbone hydrogen 

bonds with Leu369 and Gly370 (Biterova and Barycki, 2009). Thus, the R280H mutation 

likely affects both the enzymatic activity and the protein stability of glutamate cysteine 

ligase. Taken together, these results demonstrate that the GSH deficiency in erv1-1 is 

caused by a previously undetected secondary mutation in glutamate cysteine ligase. 

Erv1 does not have a significant role in maturation of cytosolic Fe-S cluster 

proteins. Since the erv1-1 strain is reported to have defects in maturation of cytosolic 

Fe-S cluster proteins, we sought to determine whether GSH deficiency was the root cause 

of this phenotype rather than Erv1 dysfunction. To examine Erv1’s role in Fe-S cluster 

assembly, we expressed human IRP1 in the yeast cytosol, which acts as a cytosolic Fe-S 

assembly reporter (Zhang et al, 2008; Amutha et al, 2008). The Fe-S-dependent aconitase 

activities of IRP1 and the native yeast mitochondrial aconitase (Aco1) were then assessed 

in parallel via an in-gel activity assay (Tong and Rouault, 2006). Aco1 and IRP1 are well-
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resolved by this method and can be used to separately monitor Fe-S cluster loading of 

aconitase in mitochondria and cytosol.  

Interestingly, the erv1-1 mutant exhibited slightly higher Aco1 and IRP1 activity 

than the isogenic WT control, although in numerous trials the visible aconitase activity was 

lower for this strain background compared to others tested (Figure 5.2A). Cytosolic 

aconitase activity is significantly lower in cells grown at the restrictive temperature 

compared to cells grown at the permissive temperature, even though there is more IRP1 

protein expressed at 37 °C, while mitochondrial aconitase activity is not altered. Addition 

of 1 mM GSH to the growth medium increases both mitochondrial and cytosolic aconitase 

activity in the erv1-1 mutant at both 24 and 37 °C with little effect on the WT control. 

We next tested two versions of the W303-erv1(F124S) strain, in which the erv1-1 

mutation is introduced into a different strain background, one strain was a gift from Dr. 

Elizabeth Craig (U. Wisc) and the other was created by Rabindra Behera in our group using 

shuffling plasmids provided by Dr. Jan Riemer. The Riemer F124S strain was found to 

have slightly lower cytosolic aconitase activity compared to the isogenic WT strain at both 

24 and 37 °C (Figure 5.2B, left). However, this decrease is most likely due to lower levels 

of IRP1 protein compared to temperature-matched WT controls rather than decreased Fe-

S cluster incorporation, as revealed by the IRP1 western blot. For these strains, no 

significant changes were observed upon addition of GSH to the growth medium. The Craig 

F124S strain did not show any significant difference in aconitase activity compared to the 

isogenic WT at either 24 or 37 °C (Figure 5.2B, right). Again, no significant changes were 

observed in either strain upon addition of GSH to the growth medium. 
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Figure 5.2. In-gel aconitase assays for cells grown in SC glucose media. (A) JRY675 

WT and erv1-1 strains. (B) W303 WT and F124S strains from Riemer (left) and Craig 

(right). (C) YPH499 WT and erv1 (left) and mia40 (right) mutant strains. C lanes: 

control, WT strain with vector.  
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Finally, we tested the erv1-2, erv1-5, mia40-3, and mia40-4 mutants in the YPH499 

strain background (Figure 5.2C). None of these mutants showed any significant difference 

in cytosolic or mitochondrial aconitase activity when compared to WT at either 24 or 37 

°C, with addition of GSH to the growth medium having little or no effect. Taken together, 

these data argue against a significant role for Erv1 in the biogenesis of mitochondria or 

cytosolic Fe-S cluster proteins.  

Defects in iron regulation in erv1-1 are rescued by GSH. In addition to exhibiting 

cytosolic Fe-S cluster deficiency, mutations in erv1 have also been implicated in 

dysregulation of iron homeostasis leading to mitochondrial Fe accumulation (Aloria et al, 

2004; Lill et al, 2014). To determine if iron regulation was dysfunctional in the erv1 and 

mia40 mutants, we measured the expression of two iron regulon genes, FET3 and FIT3, 

under varying iron growth conditions. FET3 encodes a multicopper oxidase involved in 

high affinity iron uptake, while FIT3 encodes a cell wall mannoprotein involved in 

siderophore uptake (Askwith et al, 1994; Philpott et al, 2002). Under iron-limiting 

conditions, Aft1/2 induces their expression, while under normal and high iron conditions 

their expression is deactivated. Using FET3-LacZ and FIT3-LacZ reporters, we measured 

β-galactosidase activity in extracts from cells grown in either high, normal, or low iron 

conditions. 

Both the FET3 and FIT3 reporters showed misregulation of iron homeostasis in the 

erv1-1 mutant (Figure 5.3) since the genes are highly expressed regardless of iron growth 

conditions. However, the erv1-1 strain exhibits this misregulation at both the permissive 

and restrictive temperatures, suggesting that Erv1 dysfunction is not the underlying cause 

for this phenotype. Therefore, we tested whether addition of GSH to the growth media  
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Figure 5.3. β-galactosidase activity of JRY675 WT and erv1-1 expressing (A) the FET3- 

LacZ reporter construct and (B) the FIT3- LacZ reporter construct. Left panels show strains 

grown at 24 °C (permissive), right panels show strains grown at 37 °C (restrictive). Top 

panels show strains grown in SC media without GSH, bottom panels show strains grown 

in SC media with 1 mM GSH.  
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rescued the erv1-1 iron misregulation phenotype. With both reporters, we saw higher 

overall expression compared to WT, but the pattern of expression showed functional 

regulation (off when iron is normal or high, on when iron is low). 

In addition, all of the other temperature sensitive erv1 (erv1-2, erv1-5) and mia40 

(mia40-3, mia40-4) mutants that have normal GSH levels exhibited normal regulation of 

the iron-responsive genes under both permissive and restrictive growth temperatures 

(Figure 5.4). Addition of 1 mM GSH to these mutants has no effect on regulation of FET3 

expression. In order to show that these effects were not dependent on growth temperature, 

we also tested expression of the FET3 reporter in the GAL-ERV1 strain. As expected, iron 

regulation in the GAL-ERV1 strain was similar to the isogenic WT control with both up- 

and down-regulation of ERV1, and addition of GSH did not change regulation of FET3 

expression (Figure 5.5). Taken as a whole, these results indicate that dysfunctional iron 

regulation in the erv1-1 mutant is due to low levels of GSH, rather than specific defects in 

the Erv1 protein. 

Mitochondrial iron accumulation in erv1-1 is rescued by GSH. Previous results 

demonstrate that deletion or depletion of the ISC Fe-S cluster assembly or export 

machinery, including the glutathione-persulfide exporter Atm1, causes accumulation of 

iron in the mitochondria (Kispal et al, 1997; Mühlenhoff et al, 2003; Lill, 2009; Lill et al, 

2012).  This effect is attributed to constitutive activation of the iron regulon leading to 

intracellular iron accumulation.  A previous report suggested that mitochondrial iron is 

similarly elevated in an erv1 mutant (Aloria et al, 2004).  To determine whether iron levels 

are affected by erv1 dysfunction, iron levels in mitochondrial and cytosolic extracts were 

measured in several erv1 mutants using atomic absorption spectroscopy (Figure 5.6). 



www.manaraa.com

192 
 

 

 

 
 

Figure 5.4. β-galactosidase activity of YPH499 erv1 and mia40 mutants expressing the 

FET3-LacZ reporter construct. Left panels show strains grown at 24 °C (permissive), right 

panels show strains grown at 37 °C (restrictive). Top panels show strains grown in SC 

media without GSH, bottom panels show strains grown in SC media with 1 mM GSH. 
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Figure 5.5. β-galactosidase activity of W303 WT and GAL-ERV1 expressing the FET3-

LacZ reporter construct. Left panels show strains grown in SC galactose media (Gal ON), 

right panels show strains grown in SC raffinose media (Gal OFF). Top panels show strains 

grown in SC media without GSH, bottom panels show strains grown in SC media with 1 

mM GSH. 
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Figure 5.6. Atomic absorption measurements of iron in the cytosol (A) and the 

mitochondria (B) for cells grown to mid-log phase in SC glucose media. JRY675 WT and 

erv1-1 strains are shown on the left. W303 WT and F124S strains from Riemer and Craig 

are shown in the middle (respectively). W303 WT and Gal-regulated ATM1 and ERV1 

strains are shown on the right. (C) Cytosolic (left) and mitochondrial (right) iron 

measurements of JRY675 WT and erv1-1 strains grown in YPD (GSH- and Fe-rich media). 

Blue bars show permissive/induced growth (24 °C and Gal ON), red bars show 

restrictive/repressed growth (37 °C and Gal OFF). 
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The erv1-1 mutant had iron levels comparable to WT in the mitochondria at 24 °C 

when grown in defined SC glucose media, although cytosolic iron levels were slightly 

elevated (Figure 5.6A-B, left). At 37 °C, the cytosolic iron was 2.5-fold higher and 

mitochondrial iron was 7.5-fold higher than WT levels. Since GSH is required for iron 

regulation via the Grx3-Fra2 signaling pathway to Aft1/2, the low GSH in this mutant is 

likely causing this defect. When erv1-1 is grown in YPD (GSH- and Fe-rich media), the 

mitochondria no longer accumulate iron, although there is still a slight elevation of 

cytosolic iron levels compared to WT grown in the same conditions. Since these strains 

were grown in rich media, they accumulate more iron than those grown in SC media. 

As expected, the temperature-sensitive erv1(F124S) mutants in W303 did not 

exhibit substantial changes in mitochondrial or cytosolic iron levels at 24 °C when grown 

in SC glucose media (Figure 5.6A-B, middle). In cells grown at 37 °C, both Riemer and 

Craig erv1(F124S) mutants had slightly higher cytosolic iron (~two-fold higher than WT 

levels), with normal mitochondrial iron levels. It was reported that the Craig erv1(F124S) 

strain had ten-fold higher levels of iron in the mitochondria  when grown at 37 °C (Aloria 

et al, 2004). However, these cells were grown in YPD (rich media), which has more 

bioavailable iron for cells to take up. It was also not specified whether these elevated iron 

levels were compared to the WT strain grown at 37 °C, or to the erv1(F124S) strain grown 

at 24 °C. Furthermore, the growth phase of the strains measured was not identified, and no 

data was shown for these experiments. 

As a control, we measured iron levels in a GAL-ATM1 strain that is known to have 

defects in cytosolic Fe-S cluster assembly and accumulate mitochondrial iron (Kispal et al, 

1997; Lange et al, 2004), and compared this to the iron levels in the GAL-ERV1 strain 
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(Figure 5.6A-B, right). When Atm1 and Erv1 are overexpressed (Gal ON), mitochondrial 

and cytosolic iron levels are comparable to WT. However, when Atm1 is depleted, 

mitochondrial iron levels were found to be four times higher than WT, while cytosolic 

levels remained unchanged. In contrast, when Erv1 is depleted (Gal OFF), cytosolic iron 

levels are elevated by approximately two-fold, while mitochondrial iron decreases by two-

fold compared to the temperature-matched WT control. Thus the pattern of iron distribution 

for GAL-ERV1 is markedly different than GAL-ATM1, demonstrating that the two strains 

do not exhibit similar iron-related phenotypes. Taken together, this data reaffirms that only 

the erv1-1 mutant has a defect causing significant problems in Fe-S cluster assembly and 

iron regulation, and is likely not due to mutations in the Erv1 protein. 

CONCLUSIONS 

Previous reports have suggested a role for the sulfhydryl oxidase Erv1 in cytosolic 

Fe-S cluster assembly, specifically in shuttling the Atm1 GSH-persulfide substrate from 

the mitochondrial ISC pathway to the cytosol for the CIA machinery. Data presented here 

refutes this role. Instead, we show that the Fe-S related phenotypes previously reported for 

the erv1-1 strain were caused by low GSH levels due to a mutation in the GSH1 

biosynthesis gene, which is specific to the erv1-1 mutant that was tested. This depletion of 

GSH was only seen in the erv1-1 strain, and not in several other temperature-sensitive erv1 

and mia40 mutants or in a GAL-ERV1 strain. 

Cytosolic Fe-S cluster assembly was investigated by measuring the aconitase 

activity of IRP1. Assembly was not found to be defective in any of the erv1 and mia40 

mutants tested compared to WT controls, including the erv1-1 strain. However, the JRY675 

strains had lower overall activity compared to W303 and YPH499 strains, and only the 
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erv1-1 mutant showed an increase in IRP1 aconitase activity upon addition of GSH to the 

growth media. The original experiments suggesting that Erv1 was connected to cytosolic 

Fe-S cluster assembly measured 55Fe incorporation into two different cytosolic Fe-S 

proteins, Leu1 and Rli1 (Lange et al, 2001). Although these proteins were found to 

incorporate significantly less iron in the erv1-1 strain, the activity of these proteins was 

never directly measured or reported. Thus, it is possible that these proteins did not have 

activity in either the WT or the erv1-1 strain, and the iron incorporated was not in the 

correct form. 

As another test for Erv1’s putative role in iron metabolism, we investigated iron 

regulation, which is dependent on mitochondrial Fe-S cluster assembly, GSH, and the 

mitochondrial GSH-persulfide transporter Atm1. Since Erv1 is proposed to facilitate 

export of the Atm1 substrate, it was expected to exhibit defects in iron regulation (Lill, 

2009). However, we found that iron regulation is defective only in the erv1-1 strain, in 

which the iron regulon is activated regardless of iron availability. Addition of GSH to the 

growth media rescues this defect, suggesting that GSH depletion, rather than Erv1 

dysfunction, is the root cause. This conclusion is further supported by the fact that the other 

erv1 and mia40 mutants tested did not exhibit any defects in Aft11/2-dependent iron 

regulation.  

Cells with dysfunctional iron regulation tend to accumulate iron, responding as if 

they are iron-starved. Only the erv1-1 mutant significantly accumulated iron in the 

mitochondria, with a 7.5-fold increase compared to the WT. In comparison, we found that 

when Atm1 is depleted, cells accumulate four times more iron in the mitochondria 
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compared to the WT. However, when erv1-1 is grown in YPD, a GSH- and Fe-rich media, 

it no longer accumulates iron in the mitochondria. 

Taken together, data presented here shows that defects in iron regulation and 

cytosolic Fe-S cluster maturation in the erv1-1 strain are due to depleted GSH levels, rather 

than mutations in the Erv1 protein. Instead, we found a mutation in the glutathione 

biosynthesis gene, GSH1, which causes cells to have severely low levels of GSH. All of 

these iron-related defects are rescued upon addition of GSH to cell growth, reinforcing our 

hypothesis. Thus, Erv1 and Mia40 are unlikely to be directly involved in the connection 

between mitochondrial and cytosolic Fe-S cluster assembly pathways. 
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CHAPTER 6 

SUPPLEMENTARY METHODS 

 

INTRODUCTION 

The purpose of this chapter is to provide details on methods that were optimized 

for specific purposes in the lab. This includes the in vitro electrophoretic mobility shift 

assays (EMSAs), and the in vivo β-galactosidase and in-gel aconitase assays for yeast 

strains. The EMSA and β-galactosidase assays were modified from protocols used in Dr. 

Dennis Winge’s lab (Rutherford et al., 2001; Thorvaldsen et al., 1993), with the EMSAs 

modified for fluorescently labeled DNA probes. The in-gel aconitase assay was adapted 

from protocols used in Dr. Tracey Rouault’s and Dr. Andrew Dancis’ labs (Tong and 

Rouault, 2006; Zhang et al., 2008). 
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AFT1/2 GEL SHIFT ASSAY 

1. Make 100 µM stocks of oligos in 0.5x TB buffer 

Table 6.1: IRDye oligos used in Aft1/2 gel shift assays 

 

Oligo name Sequence 

FET3 forward 5’-(IRDye700)-ATCTTCAAAAGTGCACCCATTTGCAGGTGC-3’ 

FET3 reverse 5’-(IRDye700)-GCACCTGCAAATGGGTGCACTTTTGAAGAT-3’ 

MRS4 forward 5’-(IRDye700)-TTTCGGTATTTTGGCACCCTTTCTTGAATG -3’ 

MRS4 reverse 5’-(IRDye700)-CATTCAAGAAAGGGTGCCAAAATACCGAAA -3’ 

 

2. Anneal oligos by mixing 5µL forward + 5µL reverse DNA fragments. Heat at 100°C for 5 

min, then allow to cool to RT over 1-2 hours. 

3. Dilute annealed DNA to a 500nM stock. 

4. Cast 6% polyacrylamide gel in 0.5x TBE 

 All steps after this point are done anaerobically in the glovebox 

5. Pre-electrophorese gel at 80V (10V/cm) for 40 min in 0.5x TB (until current is stable, ~4-

6mA for one gel). 

6. Dilute annealed 500nM DNA to 50nM for binding reactions in sterile H2O. 

7. Make stock solutions for the protein being used. The stock should be 10x your final 

concentration (so you add 2µL for a 20µL reaction) for each binding reaction. 

*Note: make sure the amount of protein you add to each binding reaction is 

consistent! This means you will need to vary your 10x protein stock solutions. 

8. Set up binding reactions in the dark. Components should be added in the following order: 

H2O  10x binding buffer  DTT, glycerol, ssDNA  IRDye DNA  Protein 

* 10x binding buffer: 200 mM Tris-HCl, pH 7.5, 3M NaCl, 1M KCl, 30mM MgCl2 

* all volumes are in µL, total reaction volume of 20µL 
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Table 6.2: Set-up of Aft1/2 binding reactions 

 

 Final 1 2 3 4 5 6 7 8 9 10 

10x binding 1x 2 2 2 2 2 2 2 2 2 2 

H2O - 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 

20 mM 

DTT 
1 mM 1 1 1 1 1 1 1 1 1 1 

50% 

glycerol 
5% 2 2 2 2 2 2 2 2 2 2 

50 ng/µL 

ssDNA 

4 

ng/µL 
1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 

50 nM IR-

FET3 

2.5 

nM 
1 1 1 1 1 1 1 1 1 1 

Aft2 _ 2 2 2 2 2 2 2 2 2 2 

[Aft2]Stock ‒ 
1x 

binding 

25 

nM 

50 

nM 

100 

nM 

200 

nM 

500 

nM 

1 

µM 

2 

µM 

5 

µM 

10 

µM 

[Aft2]Final ‒ 
0 

nM 

2.5 

nM 

5 

nM 

10 

nM 

20 

nM 

50 

nM 

100 

nM 

200 

nM 

500 

nM 

1 

µM 

 

9. Allow reactions to incubate at 30°C for 20 minutes in the dark. 

10. Flush wells with 50µL of fresh 0.5x TB running buffer before loading samples. 

11. Load reactions to gel, and run at 80V for 1h, 30m. 

12. Remove gel + glass plates (do not separate) from buffer, rinse with DI water, and dry. 

13. Scan on Odyssey as “DNA gel”, focus offset 2.5 mm (2mm plate + ½ 1mm gel). Only the 

700 channel should be checked, intensity 8.0 to start.  
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BOLA GEL SHIFT ASSAY 

1. The mreB promoter needs to be PCR-amplified from E. coli genomic DNA using 

IRDye700-labeled primers: 

mreB forward: 5’-(IRDye700)-CAGCCACTTGATACTAACGTG-3’ 

mreB reverse: 5’-(IRDye700)-CAACATACTAAGGGATAATCCTG-3’ 

2. Make 1 mg/mL stocks of primers. Dilute to 50 ng/µL stocks of primers. 

3. Set up a PCR reaction mix using Pfu Ultra and E. coli genomic DNA as template 

(50ng/µL). Use PCR program for Pfu with an annealing temperature of 53 °C. 

4. Run entire reaction on a 1% agarose DNA gel and extract fragment (361 bp) with 

Freeze-n-squeeze kit. DNA can be stored at -20 °C. 

5. Cast a 5% polyacrylamide gel in 0.5x TBE 

6. Prepare binding buffer: 20 mM Tris-HCl, pH 8.0, 100 mM KCl, 1 mM DTT, 5% 

glycerol, 2.5 ng/µL ssDNA, ± 25 mM EDTA 

7. Check concentration of IRDye mreB promoter fragment (1:20 dilution of gel 

extracted PCR product  use MW = 223 kDa to convert ng/µL to nM) 

8. Make a 20 nM stock of IRDye DNA for binding reactions 

9. Set up dilutions of BolA from a 50µM stock. Dilutions should be made in 50 mM 

Tris/MES, pH 8.0, 150 mM NaCl buffer. 

10. Add 20 nM IRDye DNA to binding buffer (1 nM final), aliquot 18 µL buffer into 

tubes. 

11. Add 2 µL of BolA protein (at 10x the binding concentration) to each tube of buffer 

+ DNA for a total reaction volume of 20 µL 

12. Incubate at 37°C for 20 min in the dark 

13. Follow steps 10-13 from the Aft1/2 gel shift protocol above for gel-running.  
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Β-GALACTOSIDASE ASSAY OF YEAST EXTRACTS 

Solutions needed: 

100 mM PMSF (17.4 mg/mL in EtOH, store at -20 °C) 

Z buffer (pH to 7.0, store at 4 °C)  

 60 mM Na2HPO4 (8.52 g in 1L) 

 40 mM NaH2PO4 (4.80 g in 1L) 

10 mM KCl (0.74 g in 1L) 

1 mM MgSO4∙7H2O (0.24 g in 1L) 

add 50 mM β-ME right before using buffer (1.75 mL β-ME in 500 mL Z buffer) 

ONPG (4 mg/mL in Z buffer, store at -20 °C) 

1 M Na2CO3 (10.6 g in 100 mL, store at RT) 

Preparation of crude extracts: 

1. Grow 5 mL cultures at 30 °C overnight to an OD600 of ~0.8-1.0 in selection media 

 Triplicate for each strain (3 colonies grown for each) 

2. Divide each culture into 3 aliquots for induction, 3 mL each (want to start at an OD 

where cells will be ~0.8-1.0 after induction, for example you would have a start OD 

~ 0.25 for a 4 hr induction). Incubate cells ± Fe/BPS for the desired amount of time 

(1-5 hours) 

 High Fe conditions: add 100 µM Fe(II) (Ferrous ammonium sulfate) 

 Normal Fe: add sterile H2O 

 Low Fe: add 100 µM BPS 

3. Place cells on ice to stop growth. Harvest cells and wash with 1 mL cold Z buffer. 

 Keep cells/extract on ice for the remaining protocol 
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4. Resuspend cells in 200 µL Z buffer, 10 µL PMSF, and ~100 µL glass beads. 

5. Vortex 2 x 2 min with the BeadBeater 

6. Centrifuge extracts at 13,000 rpm for 10 min at 4 °C, collect supernatant. 

7. Check protein concentration of the extracts by Bradford Assay 

 Dilutions can be made at this point in Z buffer. 

Assaying extracts: 

1. For a 1 mL reaction: 

a. Mix and pre-warm 725 µL Z buffer and 100 µL cell extract at 30 °C 

 May need to adjust extract concentration/volume added to stay 

within the linear range (A420 < 0.3 after 15 min) 

b. Add 175 µL ONPG (0.7 mg/mL final) and incubate at 30 °C until a faint 

yellow color develops (keep track of the time) 

c. Control reaction: add 100 µL Z buffer instead of extract (use for blank) 

2. Stop reaction by adding 300 µL of Na2CO3 

3. Record A420 of each reaction 

4. β-galactosidase units = 
A420∗1.3

0.0045∗extract vol∗[protein]∗time
 

a. 1.3 corrects for reaction volume 

b. 0.0045 is the OD of a 1 nmol/mL solution of ONPG 

c. Extract volume in mL 

d. [protein] in mg/mL 

e. Time in min 

f. Activity: nmol ONPG converted/min/mg protein 
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IN-GEL ACONITASE ASSAY 

1. Grow cells in 15 mL SD selection media overnight to an OD of 1-2 

2. Harvest cells and resuspend in 1 mL sterile water, transfer to screw-cap 

microcentrifuge tubes. Spin down and aspirate off supernatant. 

3. Estimate volume of cells from graduations on microcentrifuge tube 

4. For every 150 μL cells, add 250 μL lysis buffer (prepare fresh) 

5. Add glass beads to tube, equal to volume of cells 

6. Vortex using the mini BeadBeater 3 x 1.5 min cycles 

7. Spin down at 13,000 rpm for 10 min at 4 °C, transfer supernatant to a new tube 

8. Bradford assay lysates 

9. Prepare 8% separating gel with 4% stacking gel. Chill the gel and running buffer at 

4 °C for at least 1 h. 

10. Run gels on ice at 140 V for 3.5 h (< 30 mA per gel) 

11. Transfer gel to a staining box and add assay stain. Incubate at 37 °C in a shaker at 

75 rpm in the dark for 30 min (up to 60 min) 

12. Destain by washing with MQ H2O at RT 

13. Scan the gel 

Table 6.3: In-gel assay lysis buffer 

 

Stock concentration Volume (μL) Final concentration 

500 mM Tris, pH 8.0 100 50 mM 

5 M NaCl 10 50 mM 

50% glycerol 200 10% 

25% Triton X-100 100 2.5% 

Protease inhibitor cocktail 10 1X 

100 mM PMSF 5 0.5 mM 

0.1 M DTT 10 1 mM 

4000 U/mL catalase 50 200 U/mL 

1 M citrate 2 2 mM 

H2O 513  
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10x Tris-glycine-citrate running buffer (1L, pH 8.3) 

30.2 g Tris base 

144 g glycine 

Do not adjust pH. Add 3.6 mM citrate to 1x before use (2.52 mL of 1 M citrate for 700 

mL) 

 

TB-8.3 for gel (1 L) 

108 g Tris base 

55 g boric acid 

Do not adjust pH. 

4x Sample buffer (1 mL) 

100 μL 1M Tris, pH 8.0 

400 μL glycerol 

0.1% bromophenol blue (1 mg)

 

Separation gel – 8% TB (1 gel) 

30 % Protogel  1.68 mL 

TB-8.3   0.94 mL 

H2O   3.64 mL 

1 M citrate  22.5 μL 

10% APS  21 μL 

TEMED  6.25 μL 

 

Stacking gel – 4% TB (1 gel) 

30% Protogel  0.2 mL 

TB-8.3   0.11 mL 

H2O   1.16 mL 

1 M citrate  4.2 μL 

10% APS  21 μL 

TEMED  3.75 μL



www.manaraa.com

207 
 

Table 6.4: Aconitase assay stain 

 

component [stock solution] volume 

100 mM Tris, pH 8.0 1 M 1 mL 

1 mM NADP 20 mM (10 mg/0.6 mL) 0.5 mL 

2.5 mM cis-aconitate 50 mM (5.2 mg/0.6 mL) 0.5 mL 

5 mM MgCl2 1 M 50 uL 

1.2 mM MTT 24 mM 0.5 mL 

H2O  7.36 mL 

PMS 1.5 mg/60 uL 40 uL 

Isocitrate dehydrogenase 1 U/uL 50 uL 
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MEASURING IRON LEVELS IN YEAST USING ATOMIC ABSORPTION 

1. If using whole cells: 

a. Grow ~10 mL of cells in selection media 

b. Wash cells with water, then wash with TE buffer 

c. Resuspend cells in water to get 1 OD. Dilutions may need to be adjusted 

based on the strain (i.e., ones that accumulate iron) 

2. If making cytosolic and mitochondrial extracts: 

a. Grow at least 20 mL of cells in selection media 

b. Follow protocol for small-scale mitochondrial isolation 

c. Dilute extracts in water (cytosolic exactracts ~10 mg/mL can be diluted 

~5:500, mitochondrial extracts ~2-5 mg/mL can be diluted ~10-20:250). 

Dilutions may need to be adjusted based on the strain (i.e., ones that 

accumulate iron) 

3. All samples need to be at least 200 μL, in triplicate. 

4. Make 20 ppb and 100 ppb Fe standards in water 

5. Using the “Fe in SM” method 

6. Analyze samples 

Method Parameters: 

1. Spectrometer 

a. Define Element 

 Fe (use presets) 

 Type: AA-BG 

 Measurement: Peak Area 

b. Settings 

 Read Parameters 

 Time (sec): 5.0 
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 Delay Time (sec): 0.0 

 BOC Time (sec): 2 

 Replicates: 2 (same for all) 

 Lamp Current: no change from default 

 

2. Sampler 

a. Furnace Program: no change from default 

b. Autosampler 

 Sample 

 Volume: 20 μL 

 Diluent Location and volume (0 μL) 

 Matrix Modifiers: did not use 

c. Sequence 

 No change to Actions and Parameters 

 Pipet Speed: up 70%, dispensing 70% 

 

3. Calibration 

a. Equations and Units 

 Equation: Linear, calculated intercept 

 Max. decimal places: 3 

 Max. significant figures: 4 

 Units (calibration, samples): μg/L 

b. Standard Concentrations 

 0, 5, 10, 20, 30, 50 μg/L (from 20 and 100 ppb stocks) 

c. Initial Calibration: no change (use to load a previously run calibration) 

d. Calibration Check 

 Minimum correlation coefficient: 0.995 

 Repeat 0 times and continue if OK 

e. Recalibration 

 Periodic (no) 

 Analyze standards at end (yes) 

 

4. Checks 

a. Precision 

 Check: samples, QC samples 

 Limits 
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 Check signal: concentration 

 Signal Limit: 1 μg/L 

 If signal > limit and RSD > 15%, then action 

 Out of Limit: reanalyze 1 time 

b. Beyond Calibration 

 Check on: samples 

 Overcal Limit 110% of Calibration Range 

 Dilute and reanalyze after 1 Rep 

 Alternate volumes : 10, 5 μL 

c. Matrix Recovery: did not use/no change from default 

d. Automatic Recovery 1 & 2: did not use/no change from default 

e. Sample Limits: did not use/no change from default 

 

5. QC 

a. QC Sample Definition 

 20 ppb (location in autosampler) 

b. Concentrations and Limits 

 Fe 248.33: 20 ppb  range 18.0-22.0 ppb (determined by program) 

c. Schedule QCs 

 After Initial Calib, Periodically, At End 

 Periodic Timing 

 Frequency: same for all QCs (15) 

 Max. time between QCs: (60 min) 

 Count: samples 

d. Actions: Cailb. & Periodic 

 Retry 1 time and continue 

e. Actions: End & Retry 

 Retry 1 time and continue 

 

6. Options: did not use/no change from default 
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